
ESC101: Introduction to
Computing

Aug-15 1Esc101, Programming

A R YR A S

Defining arrays

arr-ay: noun
1. a large and impressive grouping or

organization of things: He couldn't
dismiss the array of facts.

2. regular order or arrangement;
series: an array of figures.

Dictionary meaning of the word array

http://dictionary.reference.com/browse/organization

Arrays in C
An array in C is defined similar to defining a variable.

int a[5];

The square parenthesis [5] indicates that a is not a
single integer but an array, that is a consecutively
allocated group, of 5 integers.

It creates five integer boxes or variables

The boxes are addressed as a[0], a[1], a[2], a[3] and a[4].
These are called the elements of the array.

a[0] a[1] a[2] a[3] a[4]

include <stdio.h>
int main () {

int i;
int a[5];

for (i=0; i < 5; i= i+1) {
a[i] = i+1;

printf(“%d”, a[i]);
}
return 0;

}

The program defines an
integer variable called i and
an integer array with name a
of size 5

a[0] a[1] a[2] a[3] a[4]i

This is the notation used
to address the elements of
the array.

The variable i is being used
as an “index’’ for a.
Similar to the math notation
ai

include <stdio.h>
int main () {

int a[5];
int i;

for (i=0; i < 5; i= i+1) {
a[i] = i+1;

}
return 0;

}
a[0] a[1] a[2] a[3] a[4]

i

Let us trace through the
execution of the program.

Fact : Array elements are
consecutively allocated in
memory.

0

Statement becomes a[0] =0+1;
Statement becomes a[1] =1+1;
Statement becomes a[2] =2+1;

1

1

2

23

3

Statement becomes a[3] = 3+1;
Statement becomes a[4] = 4+1;

4

4

5

5

One can define an array of float or an array of char, or
array of any data type of C. For example

int main() {
float num[100];

char s[256];

/* some code here */
}

This defines an array called num
of 100 floating point numbers
indexed from 0 to 99 and named
num[0]… num[99]

num[0] num[1] num[2] … num[99]

This defines an array called s
of 256 characters indexed from
0 to 255 and named s[0]…s[255].

s[0] s[1] s[2] s[3] … … s[254] s[255]

array
of
100
float

array
of 256
char

Mind the size(of array)
Consider
program
fragment:

int f() {
int x[5];

…
}

This defines an integer
array named x of size 5.

x[0] x[1] x[2] x[3] x[4]

Five integer variables
named x[0] x[1] … x[4] are
allocated.

The variables x[0],x[1] … x[4] are
integers, and can be assigned and operated
upon like integers! OK, so far so good!
But what about x[5], x[6], … x[55]?
Can I assign to x[5], increment it, etc.?

NO! Program may
crash!

x[5], x[6], and so on are undefined. These are names
but no storage has been allocated. Shouldn’t access them!

int f() {
int x[5];
x[0] =0;
x[1] =1;
…

x[4] =4;

x[5] = 5;
x[6] = 6;

}

Will it compile? Yes, it
will compile. C compiler
may give a warning.

But, upon execution, the program
may give “segmentation fault:
core dumped” error or it may also
run correctly and without error.

All
good

Both these
statements
are not
recommended.

Ans: You
can but

shouldn’t.
Program

may crash.

Q: Shouldn’t I or couldn’t I
access array elements outside
of the array range declared?

Reading directly into array

#include <stdio.h>
int main() {

int num[10];
for (i=0; i<10; i=i+1) {

scanf(“%d”, &num[i]);
}
return 0;

}

Read N numbers from user directly into an array

scanf can be used to
read directly into array
by treating an array
element like any other
variable of the same
data type.

1. For integers, read as
scanf(“%d”, &num[i]);

2. For reading elements
of a char array s[],
use scanf(“%c”, &s[j]).

What does &num[i] mean?

&num[i] is evaluated as
&(num[i]).

& is applied to the result
of applying the indexing
operator [i] to num.

NOT as
(&num)[i] which would mean
that first & is applied to
num and [] operator is
applied to &num

& is the “address-of’’
operator.
1. It can be applied to any

defined variable.
2. It returns the location

(i.e., address) of this
variable in the program’s
memory.

scanf(“%d”, &num[i]);

[] is the array indexing
operator, e.g, num[i].

In the previous slide, we had
the statement:

&num[i] is made of two
operators & and []. & num
[i] gives the address of
the array element num[i].

() []

! & -

* / %

+ -

< <= > >=

== !=
&&
||
=
,

LR

RL

LR

LR

LR

LR
LR
LR
RL

LR

We have seen that &num[i] is
evaluated by applying the
indexing operator first and the
address-of operator second.

More formally, the precedence of
the operators in C reflects this.

1. The array indexing operator
[] is given higher precedence
than the address-of operator
&.

2. So &num[i] is evaluated by
applying the array operator
first and the address-of
operator next.

LR: Left-to-Right associativity
RL: Right –to-Left associativity

Legend

Array Example: Print backwards

Define a character array of size 100 (upper limit) and
read the input character by character and store in
the array until either
• 100 characters are read or
• EOF (End Of File) is encountered
Now print the characters backwards from the array.

Problem:

Example Input 1

Me or
Moo

Output 1
ooM
ro eM

Eena Meena Dika
Example Input 2

akiD aneeM aneE
Output 2

Read and print in reverse
1. We will design the program in a top down fashion,

using just main() function.
2. There will be two parts to main: read_into_array and

print_reverse.
3. read_into_array will read the input character-by-

character up to 100 characters or until a end of
input.

4. print_reverse will print the characters in reverse.

int main() {
char s[100]; /* to hold the input */
/* read_into_array */
/* print_reverse */
return 0;

}

Overall design

Let us design the program fragment read_into_array.

Keep the following variables:
1. int count to count the number of characters read so far.
2. int ch to read the next character using getchar().

int ch;
int count = 0;
read the next character into ch using getchar();
while (ch is not EOF AND count < 100) {

s[count] = ch;
count = count + 1;
read the next character into ch using getchar();

}

Note that getchar() has prototype int getchar()
since getchar() returns all the 256 characters and the
integer EOF

An initial design (pseudo-code)

int ch;
int count = 0;
read the next character into ch using getchar();
while (ch is not EOF AND count < 100) {

s[count] = ch;
count = count + 1;
read the next character into ch using getchar();

}

int ch;
int count = 0;
ch = getchar();
while (ch != EOF && count < 100) {

s[count] = ch;
count = count + 1;
ch = getchar();

}
Translating the read_into_array
pseudo-code into code.

int main() {
char s[100];

/* read_into_array */
/* print_reverse */

return 0;
}

Overall design

What is the value of
count at the end of
read_into_array?

	ESC101: Introduction to Computing
	Defining arrays
	Arrays in C
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Mind the size(of array)
	
	Reading directly into array
	What does &num[i] mean?
	Slide Number 11
	Array Example: Print backwards
	Read and print in reverse
	Slide Number 14
	Slide Number 15

