
ESC101: Introduction to
Computing

Command Line
&
File Handling

Nov-15 Esc101,FileIO 1

The Programming Cycle
1. Write your program or edit (i.e., change or

modify) your program.
2. Compile your program. If compilation fails,

return to editing step.
3. Run your program on an input. If output is not

correct, return to editing step.
a. Repeat step 3 for other inputs, if any.

Write/Edit RunCompile Compilation
Errors ?

NO

OK?

YES

NO
A simple development cycle of a program

YES
More
Inputs

YES!!
DONEInputs

Exhausted11/9/2015 Esc101, Programming 2

Edit
 First login to the system.
 Now open an editor. An editor is a system program

that lets you type in text, modify and update it.
 Some popular editors are: vim, emacs, gedit,

notepad
 Use an editor that provides syntax highlighting

and auto-indent
 My personal favorites are emacs and vim – many

powerful features
 Type in your code in the editor. Save what you type

into a file.
 Give meaningful names to your files.

 After editing, you have to COMPILE the
program.

 The computer cannot execute a C program or
the individual statements of a C program
directly.
 For example, in C you can write
 The microprocessor cannot execute this

statement. It translates it into an equivalent
piece of code consisting of even more basic
statements.

 Some error checking is also done as
part of compilation process.

g = a + b * c

Compile

On Unix/Linux Konsole you can COMPILE
the program using the gcc command.

 If there are no errors, then the system
silently shows the prompt ($).

 If there are errors, the system will list
the errors and line numbers. Then you
can edit (change) your file, fix the
errors and recompile.
Warnings may also be produced.

gcc sample.c

How do you compile?

 As long as there are compilation
errors, the EXECUTABLE file is not
created.

 If there are no errors then gcc places
the machine program in an executable
format for your machine and calls it
a.out

 The file a.out is placed in your current
working directory.

Compile…

include <stdio.h>
int main () {

printf(“Welcome to C”);
return 0;

}

Simple! Program

 Lets compile some of the simplest C programs.
 Login, then open an editor and type in the

following lines. Save the program as sample.c

sample.c: The program prints the message “Welcome to C”

Compile and Run

 Now compile the program. System compiles
without errors.

 Compilation creates the executable file
a.out by default.

 Now run the program. The screen looks like
this:

$ gcc sample.c
$

$./a.out
Welcome to C$

Introduction to Files and Directory

 Compiling using gcc by default produces the
file a.out in your current working directory.

 Let us understand the notion of directory
and current working directory.

 The unit of data in a system is a file.
 Files are organized into directories, also

called folders. Each directory may have
many files inside it and also many
directories inside it.

 Having files and directories inside
directories gives it a hierarchical structure.

Directory per user
/users/btech15/srk/

Directory Hierarchy
 The root directory has the symbol /

/

bin/ home/ users/… …

Root directory
usually has no files,
only directories.

Second level
directory
/users/btech10/,…

btech15/ btech13/ btech10/…

mowgly/ srk/bhaloo/ …

Don2/ esc101/ Ra.one/

First level
directories:
/bin, /users

Directories of
user srk

sample.c a.out sample2.c Example: full name
/users/btech15/srk/esc101/sample.c

Directory commands
 When user srk logs in,

the system places him in
his home directory:

/users/btech15/srk/
 srk can find his current

directory by typing

 pwd stands for print
working directory

$pwd
/usrs/btech15/srk

btech15/

users/

/

srk/

Sample.c Sample2.ca.out

esc101/

Directory commands
 After login srk is in home

directory /users/btech15/srk
 To change directory to esc101

 System returns silently. If
there is spelling error, system
gives a message. For example,

btech15/

users/

/

srk/

Sample.c Sample2.ca.out

esc101/

$cd esc101/
$

$cd esc101a/
cd: esc101a: no such file or
directory

These are files. Files are at the bottom of the directory hierarchy. Files do not contain
Files or directories. Only directories contain files or other directories (or both).

Arguments on the Command Line
Typically when using commands we
provide arguments to the command in the
same line.
 cd my_dir
 gcc my_file.c
 cp file1.c file2.c
In each case, stuff in red is the command
line argument
In the third example, cp is the command
name and file1.c and file2.c are its two
arguments.

Nov-15 13Esc101,FileIO

Batch mode vs. Interactive mode
Interactive mode:

1. first you enter command (say mkdir)
2. then you get prompted and you enter an arg (the

directory name, say esc101)
3. mkdir creates the directory esc101, and asks if you

want to create more directories. If you say yes, it
goes to step 2. Else, it exits.

This is cumbersome.
Batch Mode: If the arguments are standard, we
prefer entering them along with the command
(Also called command-line mode):
 mkdir esc101 phy102 chm_lab
 3 Directories created: esc101, phy102 and chm_lab

Nov-15 14Esc101,FileIO

Command Line Args in C
Write a program to read a name from
command line, and say “Hello” to it.
Some Example Interaction (Output in red):
$./a.out Amey
Hello Amey
$./a.out World
Hello World
$./a.out ESC101
Hello ESC101

Nov-15 15Esc101,FileIO

Note that the
program really has no
sense of what is a
name. It just prints
the argument
provided.

Command Line Args = Args to main
So far we used the following signature
for main

int main()
But main can take arguments. The
modified prototype of main is

int main(int argc, char **argv)
 Argument Count (argc): An int that tells the

number of arguments passed on command line
 Argument Values (argv): Array of strings.

argv[i] is the i-th argument as string.
Nov-15 16Esc101,FileIO

Args to main
./a.out 11 + 2 is 13

argc = 6 ./a.out is included in arguments
argv

Nov-15 17Esc101,FileIO

argv[0]]

argv[1]]

argv[2]]

argv[3]]

argv[4]]

argv[5]]

“./a.out”

“+”

“is”

“11”

“2”

“13”

Note that
everything is
treated as string,
even the numbers!

Example

Nov-15 18Esc101,FileIO

#include<stdio.h>

int main(int argc, char *argv[]) {
if (argc<2)

printf ("Too few args!\n");
else if (argc == 2)

printf (“Hello %s\n",argv[1]);
else

printf("Too many args!\n");
return 0;

}

$./a.out Amey
Hello Amey
$./a.out World
Hello World
$./a.out ESC101
Hello ESC101

$./a.out
Too few args!

$./a.out Hey There
Too many args!

NOTE: char **argv is
same as char *argv[]

What about Other Types?
Write a program that takes two numbers
(integers) on command line and prints
their sum.
Problem:
 Everything on command line is read as string!
 How do I convert string to int?
Solution: Library functions in stdlib.h
 atoi: takes a string and converts to int

atoi(“1234”) is 1234, atoi(“123ab”) is 123, atoi(“ab”) is 0

 atof: converts a string to double
Other variations : atol, atoll

Nov-15 19Esc101,FileIO

Adding 2 Numbers

Nov-15 20Esc101,FileIO

#include<stdio.h>
#include<stdlib.h>
int main(int argc, char *argv[]) {

if (argc != 3)
printf (“Bad args!\n");

else {
int a = atoi(argv[1]);
int b = atoi(argv[2]);
printf (“%d\n",a+b);

}
return 0;

}

$./a.out 3 4
7
$./a.out 3 -4
-1
$./a.out 3 four
3

$./a.out
Bad args!

$./a.out 3 4 5
Bad args!

Command Line Sorting

Nov-15 21Esc101,FileIO

int main(int argc, char *argv[]) {
int *ar, n;

n = argc - 1;
ar = (int *)malloc(sizeof(int) * n);
for (i=0; i<n; i++)

ar[i] = atoi(argv[i+1]);

merge_sort(ar, n); // or any other sort

for (i=0; i<n; i++)
printf("%d ",ar[i]);

return 0;
}

$./a.out 1 4 2 5 3 9 -1 6 -10 10
-10 -1 1 2 3 4 5 6 9 10

void merge_sort (
int *arr, int n)

{
…

}

Renaming Executable

Nov-15 22Esc101,FileIO

int main(int argc, char *argv[]) {
int *ar, n;

n = argc - 1;
ar = (int *)malloc(sizeof(int) * n);
for (i=0; i<n; i++)

ar[i] = atoi(argv[i+1]);

merge_sort(ar, n); // or any other sort

for (i=0; i<n; i++)
printf("%d ",ar[i]);

return 0;
}

$./sort 1 4 2 5 3 9 -1 6 -10 10
-10 -1 1 2 3 4 5 6 9 10

The flag “-o” of gcc can
be used to give user-
defined name to the
executable, e.g.
$ gcc –o sort myfile.c

void merge_sort (
int *arr, int n)

{
…

}

Reading from and Writing to
a File from C Program

Nov-15 23Esc101,FileIO

Files
 What is a file?

 Collection of bytes stored on secondary
storage like hard disks.

 Any addressable part of the file system
in an Operating system can be a file.
 includes such strange things as /dev/null

(nothing), /dev/usb (USB port), /dev/audio
(speakers), and of course, files that a user
creates (/home/don/input.txt,
/home/don/Esc101/lab12.c)

Nov-15 Esc101,FileIO 24

File Access

 3 files are always connected to a C
program :
− stdin : the standard input, from

where scanf, getchar(), gets() etc.
read input from

− stdout : the standard output, to
where printf(), putchar(), puts() etc.
output to.

− stderr : standard error console.
Nov-15 Esc101,FileIO 25

File handling in C
1. Open the file for reading/writing etc.: fopen

• return a file pointer
• pointer points to an internal structure containing

information about the file:
• location of a file
• the current position being read in the file
• and so on.

FILE* fopen (char *name, char *mode)

2. Read/Write to the file
int fscanf(FILE *fp, char *format, …)
int fprintf(FILE *fp, char *format, …)

3. Close the File.
int fclose(FILE *fp)

Compared to scanf
and printf – a new
(first) argument fp
is added

Nov-15 Esc101,FileIO 26

Opening Files
FILE* fopen (char *name, char *mode)
 The first argument is the name of the file

─ can be given in short form (e.g. “inputfile”) or the full path
name (e.g. “/home/don/inputfile”)

 The second argument is the mode in which we
want to open the file. Common modes include:

– “r” : read-only. Any write to the file will fail. File
must exist.

– “w” : write. The first write happens at the beginning
of the file, by default. Thus, may overwrite the
current content. A new file is created if it does not
exist.

– “a” : append. The first write is to the end of the
current content. File is created if it does not exist.

Nov-15 Esc101,FileIO 27

Nov-15 Esc101,FileIO 28

Opening Files
 If successful, fopen returns a file pointer –

this is later used for fprintf, fscanf etc.
 If unsuccessful, fopen returns a NULL.
 It is a good idea to check for errors (e.g.

Opening a file on a CDROM using “w” mode
etc.)

Nov-15 Esc101,FileIO 28

Closing Files
 An open file must be closed after last use

 allows reuse of FILE* resources
 flushing of buffered data

File I/O: Example
 Write a program that will take two

filenames, and print contents to the
standard output. The contents of the first
file should be printed first, and then the
contents of the second.

 The algorithm:
1. Read the file names.
2. Open file 1. If open failed, we exit
3. Print the contents of file 1 to stdout
4. Close file 1
5. Open file 2. If open failed, we exit
6. Print the contents of file 2 to stdout
7. Close file 2

Nov-15 29Esc101,FileIO

Nov-15 Esc101,FileIO 30

int main()
{
FILE *fp; char filename1[128], filename2[128];
scanf(“%s”, filename1);
scanf(“%s”, filename2);
fp = fopen(filename1, "r");
if(fp == NULL) {
fprintf(stderr, "Opening File %s failed\n", filename1);
return -1;

}
copy_file(fp, stdout);
fclose(fp);
fp = fopen(filename2, "r");
if (fp == NULL) {
fprintf(stderr, "Opening File %s failed\n", filename2);
return -1;

}
copy_file (fp, stdout);
fclose(fp);
return 0;

}
Nov-15 Esc101,FileIO 30

The Program: main

Nov-15 Esc101,FileIO 31

void copy_file(FILE *fromfp, FILE *tofp)
{

char ch;

while (!feof (fromfp)) {
fscanf (fromfp, "%c", &ch);
fprintf (tofp, "%c", ch);

}
}

Nov-15 Esc101,FileIO 31

The Program: copy_file

Some other file handling
functions

 int feof (FILE* fp);
− Checks whether the EOF is set for fp –

that is, the EOF has been encountered. If
EOF is set, it returns nonzero. Otherwise,
returns 0.

 int ferror (FILE *fp);
− Checks whether the error indicator has

been set for fp. (for example, write errors
to the file.)

Nov-15 Esc101,FileIO 32

Some other file handling
functions

 int fseek(FILE *fp, long int offset,
int origin);

− To set the current position associated with fp, to a
new position = origin+offset.

− Origin can be:
 SEEK_SET: beginning of file
 SEEK_CURR: current position of file pointer
 SEEK_END: End of file

 int ftell(FILE *fp)
− Returns the current value of the position indicator

of the stream.

Nov-15 Esc101,FileIO 33

Opening Files: More modes

 There are other modes for opening
files, as well.
− “r+” : open a file for read and write

(update). The file must be present.
− “w+” : write/update. Create an empty file

and open it both for input and output.
− “a+” : append/update. Repositioning

operations (fseek etc.) affect next read.
Output is always at the end of file.

Nov-15 Esc101,FileIO 34

FileI/O: stdout vs stderr
What is the output of following
program when run on a terminal:

Nov-15 35Esc101,FileIO

#include <stdio.h>
int main()
{
int input;
scanf("%d", &input);
fprintf(stdout, "Printing to STDOUT %d\n", input);
fprintf(stderr, "Printing to STDERR %d\n", input);
return 0;

} Printing to STDOUT 5
Printing to STDERR 5

INPUT
5

FileI/O: stdout vs stderr
What is the output of following
program when run on a terminal:

Nov-15 36Esc101,FileIO

#include <stdio.h>
int main()
{
int input;
scanf("%d", &input);
fprintf(stdout, "Printing to STDOUT %d", input);
fprintf(stderr, "Printing to STDERR %d", input);
return 0;

} Printing to STDOUT 5Printing to STDERR 5
Printing to STDERR 5Printing to STDOUT 5

INPUT
5

Stdout vs. Stderr (Intuition)

vs.

Nov-15 Esc101,FileIO 37

An Exercise

 Often, events in a system are logged on to a
particular file. (e.g. usb drive mounted, user
logs off etc.)

 These log files can be quite large. We are
usually interested in the latest events
(maybe the last 10 events.)

 The unix command “tail <filename>” prints
the last 10 lines of <filename>. Can you
program this?

 (Hint: Start at end of file, and use fseek.)
Nov-15 Esc101,FileIO 38

	ESC101: Introduction to Computing
	Slide Number 2
	Edit
	Compile
	How do you compile?
	Compile…
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Arguments on the Command Line
	Batch mode vs. Interactive mode
	Command Line Args in C
	Command Line Args = Args to main
	Args to main
	Example
	What about Other Types?
	Adding 2 Numbers
	Command Line Sorting
	Renaming Executable
	Reading from and Writing to a File from C Program
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	File I/O: Example
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	FileI/O: stdout vs stderr
	FileI/O: stdout vs stderr
	Stdout vs. Stderr (Intuition)
	Slide Number 38

