
Exercise
Write a program that reads two integers, n and m,
and stores powers of n from 0 up to m (n0, n1, …, nm)

Oct-15 1 Esc101, Pointers

#include<stdio.h>
#include<stdlib.h>
int main(){

int *pow, i, n, m;
scanf("%d %d", &n, &m); // m>= 0
pow = (int *) malloc ((m+1) * sizeof(int));
pow[0] = 1;
for (i=1; i<=m; i++)

pow[i] = pow[i-1]*n;
for (i=0; i<=m; i++)

printf("%d\n",pow[i]);
return 0;

}

Note that instead of
writing pow[i], we
can also write
*(pow + i)

NULL
A special pointer value to denote “points-to-
nothing”
C uses the value 0 or name NULL
In Boolean context, NULL is equivalent to
false, any other pointer value is equivalent
to true
A malloc call can return NULL if it is not
possible to satisfy memory request
 negative or ZERO size argument
 TOO BIG size argument

Oct-15 2 Esc101, Pointers

Pointers and Initialization
Uninitialized pointer has GARBAGE value,
NOT NULL
Memory returned by
malloc is not initialized.
Brothers of malloc
 calloc(n, size): allocates memory for n-element

array of size bytes each. Memory is initialized
to 0.

 realloc(ptr, size): changes the size of the
memory block pointed to by ptr to size bytes.
 Complicated semantics, try to avoid.

Oct-15 3 Esc101, Pointers

Both malloc, calloc return
a logically contiguous
block of memory.
Calloc also clears-
memory with zeros.

With great power comes
great responsibility

Power to allocate memory when
needed must be complimented
by the responsibility to
de-allocate memory when no
longer needed!
 free unused pointers
Be prepared to face rejection
of demand
 Check the return value of malloc

(and its variants)

Oct-15 4 Esc101, Pointers

Typical dynamic allocation

Oct-15 5 Esc101, Pointers

Dynamic memory management is
similar to library management

Oct-15 6 Esc101, Pointers

Pointer Declaration =
Registration

Oct-15 7 Esc101, Pointers

int *ar;

Declare your
intent that
you will use
books from
the library

malloc = check out

Oct-15 8 Esc101, Pointers

ar = (int*) malloc(…);
Reserve book(s) for
your use

What if the book is not available?

Oct-15 9 Esc101, Pointers

if (ar == NULL) {
// take corrective measures
// OR return failure

}

Book not available:
Purchase the book?
Share with a friend?
Not study

If the check out is successful

Oct-15 10 Esc101, Pointers

…ar[i]… // use of ar

Read it.

If the check out is successful

Oct-15 11 Esc101, Pointers

br = ar; // copy the address
…
ar[i] = …; // change the content
…
br[i] = …; // change the content indirectly
…

Share it.
Use it!

free = return the book

Oct-15 12 Esc101, Pointers

free(ar); // free after last use of
// alloc’ed memory

Your job is done,
return the book so
that others can use
it.

Return the book

Oct-15 13 Esc101, Pointers

br = ar;
…
free(br); // free after last use
free(ar); // multiple free of same loc not allowed

Your friend can
also return the
book for you.
But a book can be
returned only once
per check out!

Arrays and Pointers

In C, array names are
nothing but pointers.
 Can be used

interchangeably in most
cases

However, array names can
not be assigned, but
pointer variables can be.
 Array name is not a variable.

It gets evaluated in C.

Oct-15 14 Esc101, Pointers

int ar[10], *b;

ar = ar + 2;

ar = b;

b = ar;

b = b + 1;

b = ar + 2;

b++;

() []

! & + -

* / %

+ -

< <= > >=

== !=
&&
||
=
,

LR

RL

LR

LR

LR

LR
LR
LR
RL

LR

Precedence (Unary Refined)

* (deref) ++ --

Array of Pointers
Consider the following declaration

int *arr[10];
arr is a 10-sized array of pointers to
integers
How can we have equivalent dynamic
array?

Oct-15 16 Esc101, Pointers

int **arr;
arr = malloc ();sizeof(int *)(int **) 10 *

Array of Pointers

Note that individual elements in the array
arr (arr[0], … arr[9]) are NOT allocated
any space. Uninitialized.
We need to do it (directly or indirectly)
before using them.

Oct-15 17 Esc101, Pointers

int **arr;
arr = malloc ();sizeof(int *)(int **) 10 *

int j;
for (j = 0; j < 10; j++)

arr[j] = (int*) malloc (sizeof(int));

Exercise: All Substrings
Read a string and create an array
containing all its substrings (i.e. contiguous).
Display the substrings.

Input: ESC
Output:

Oct-15 18 Esc101, Pointers

E
ES
ESC
S
SC
C

All Substrings: Solution Strategy

Oct-15 19 Esc101, Pointers

So
lu

ti
on

: V
er

si
on

 1

Oct-15 20 Esc101, Pointers

int len, i, j, k=0, nsubstr;
char st[100], **substrs;
scanf("%s",st);
len = strlen(st);
nsubstr = len*(len+1)/2;
substrs = (char**)malloc(sizeof(char*) * nsubstr);
for (i=0; i<nsubstr; i++)

substrs[i] = (char*)malloc(sizeof(char) * (len+1));

for (i=0; i<len; i++){
for (j=i; j<len; j++){

strncpy(substrs[k], st+i, j-i+1);
k++;

}
}
for (i=0; i<k; i++)

printf("%s\n",substrs[i]);

for (i=0; i<k; i++)
free(substrs[i]);

free(substrs);

Too much wastage…

E ‘\0’
E S ‘\0’
E S C ‘\0’
S ‘\0’
S C ‘\0’
C ‘\0’

Oct-15 21 Esc101, Pointers

So
lu

ti
on

: V
er

si
on

 2

Oct-15 22 Esc101, Pointers

int len, i, j, k=0,nsubstr; char st[100], **substrs;
scanf("%s",st);
len = strlen(st);
nsubstr = len*(len+1)/2;
substrs = (char**)malloc(sizeof(char*) * nsubstr);

for (i=0; i<len; i++)
for (j=i; j<len; j++){

substrs[k] = (char*)malloc(sizeof(char) * (j-i+2));
strncpy(substrs[k], st+i, j-i+1);
k++;

}
for (i=0; i<k; i++)

printf("%s\n",substrs[i]);

This version uses much less memory compared to version 1

for (i=0; i<k; i++)
free(substrs[i]);

free(substrs);

So
lu

ti
on

: V
er

si
on

 3

Oct-15 23 Esc101, Pointers

int len, i, j, k=0,nsubstr;
char st[100], **substrs;
scanf("%s",st);
len = strlen(st);
nsubstr = len*(len+1)/2;
substrs = (char**)malloc(sizeof(char*) * nsubstr);

for (i=0; i<len; i++){
for (j=i; j<len; j++){

substrs[k] = strndup(st+i, j-i+1);
k++;

}
}
for (i=0; i<k; i++)

printf("%s\n",substrs[i]);

Less code => more readable, fewer bugs!
possibly faster!

for (i=0; i<k; i++)
free(substrs[i]);

free(substrs);

	Exercise
	NULL
	Pointers and Initialization
	With great power comes �great responsibility
	Typical dynamic allocation
	Dynamic memory management is similar to library management
	Pointer Declaration = Registration
	malloc = check out
	What if the book is not available?
	If the check out is successful
	If the check out is successful
	free = return the book
	Return the book
	Arrays and Pointers
	Precedence (Unary Refined)
	Array of Pointers
	Array of Pointers
	Exercise: All Substrings
	All Substrings: Solution Strategy
	Solution: Version 1
	Too much wastage…
	Solution: Version 2
	Solution: Version 3

