
Exercise
Write a program that reads two integers, n and m,
and stores powers of n from 0 up to m (n0, n1, …, nm)

Oct-15 1 Esc101, Pointers

#include<stdio.h>
#include<stdlib.h>
int main(){

int *pow, i, n, m;
scanf("%d %d", &n, &m); // m>= 0
pow = (int *) malloc ((m+1) * sizeof(int));
pow[0] = 1;
for (i=1; i<=m; i++)

pow[i] = pow[i-1]*n;
for (i=0; i<=m; i++)

printf("%d\n",pow[i]);
return 0;

}

Note that instead of
writing pow[i], we
can also write
*(pow + i)

NULL
A special pointer value to denote “points-to-
nothing”
C uses the value 0 or name NULL
In Boolean context, NULL is equivalent to
false, any other pointer value is equivalent
to true
A malloc call can return NULL if it is not
possible to satisfy memory request
 negative or ZERO size argument
 TOO BIG size argument

Oct-15 2 Esc101, Pointers

Pointers and Initialization
Uninitialized pointer has GARBAGE value,
NOT NULL
Memory returned by
malloc is not initialized.
Brothers of malloc
 calloc(n, size): allocates memory for n-element

array of size bytes each. Memory is initialized
to 0.

 realloc(ptr, size): changes the size of the
memory block pointed to by ptr to size bytes.
 Complicated semantics, try to avoid.

Oct-15 3 Esc101, Pointers

Both malloc, calloc return
a logically contiguous
block of memory.
Calloc also clears-
memory with zeros.

With great power comes
great responsibility

Power to allocate memory when
needed must be complimented
by the responsibility to
de-allocate memory when no
longer needed!
 free unused pointers
Be prepared to face rejection
of demand
 Check the return value of malloc

(and its variants)

Oct-15 4 Esc101, Pointers

Typical dynamic allocation

Oct-15 5 Esc101, Pointers

Dynamic memory management is
similar to library management

Oct-15 6 Esc101, Pointers

Pointer Declaration =
Registration

Oct-15 7 Esc101, Pointers

int *ar;

Declare your
intent that
you will use
books from
the library

malloc = check out

Oct-15 8 Esc101, Pointers

ar = (int*) malloc(…);
Reserve book(s) for
your use

What if the book is not available?

Oct-15 9 Esc101, Pointers

if (ar == NULL) {
// take corrective measures
// OR return failure

}

Book not available:
Purchase the book?
Share with a friend?
Not study 

If the check out is successful

Oct-15 10 Esc101, Pointers

…ar[i]… // use of ar

Read it.

If the check out is successful

Oct-15 11 Esc101, Pointers

br = ar; // copy the address
…
ar[i] = …; // change the content
…
br[i] = …; // change the content indirectly
…

Share it.
Use it!

free = return the book

Oct-15 12 Esc101, Pointers

free(ar); // free after last use of
// alloc’ed memory

Your job is done,
return the book so
that others can use
it.

Return the book

Oct-15 13 Esc101, Pointers

br = ar;
…
free(br); // free after last use
free(ar); // multiple free of same loc not allowed

Your friend can
also return the
book for you.
But a book can be
returned only once
per check out!

Arrays and Pointers

In C, array names are
nothing but pointers.
 Can be used

interchangeably in most
cases

However, array names can
not be assigned, but
pointer variables can be.
 Array name is not a variable.

It gets evaluated in C.

Oct-15 14 Esc101, Pointers

int ar[10], *b;

ar = ar + 2;

ar = b;

b = ar;

b = b + 1;

b = ar + 2;

b++;

() []

! & + -

* / %

+ -

< <= > >=

== !=
&&
||
=
,

LR

RL

LR

LR

LR

LR
LR
LR
RL

LR

Precedence (Unary Refined)

* (deref) ++ --

Array of Pointers
Consider the following declaration

int *arr[10];
arr is a 10-sized array of pointers to
integers
How can we have equivalent dynamic
array?

Oct-15 16 Esc101, Pointers

int **arr;
arr = malloc ();sizeof(int *)(int **) 10 *

Array of Pointers

Note that individual elements in the array
arr (arr[0], … arr[9]) are NOT allocated
any space. Uninitialized.
We need to do it (directly or indirectly)
before using them.

Oct-15 17 Esc101, Pointers

int **arr;
arr = malloc ();sizeof(int *)(int **) 10 *

int j;
for (j = 0; j < 10; j++)

arr[j] = (int*) malloc (sizeof(int));

Exercise: All Substrings
Read a string and create an array
containing all its substrings (i.e. contiguous).
Display the substrings.

Input: ESC
Output:

Oct-15 18 Esc101, Pointers

E
ES
ESC
S
SC
C

All Substrings: Solution Strategy

Oct-15 19 Esc101, Pointers

So
lu

ti
on

: V
er

si
on

 1

Oct-15 20 Esc101, Pointers

int len, i, j, k=0, nsubstr;
char st[100], **substrs;
scanf("%s",st);
len = strlen(st);
nsubstr = len*(len+1)/2;
substrs = (char**)malloc(sizeof(char*) * nsubstr);
for (i=0; i<nsubstr; i++)

substrs[i] = (char*)malloc(sizeof(char) * (len+1));

for (i=0; i<len; i++){
for (j=i; j<len; j++){

strncpy(substrs[k], st+i, j-i+1);
k++;

}
}
for (i=0; i<k; i++)

printf("%s\n",substrs[i]);

for (i=0; i<k; i++)
free(substrs[i]);

free(substrs);

Too much wastage…

E ‘\0’
E S ‘\0’
E S C ‘\0’
S ‘\0’
S C ‘\0’
C ‘\0’

Oct-15 21 Esc101, Pointers

So
lu

ti
on

: V
er

si
on

 2

Oct-15 22 Esc101, Pointers

int len, i, j, k=0,nsubstr; char st[100], **substrs;
scanf("%s",st);
len = strlen(st);
nsubstr = len*(len+1)/2;
substrs = (char**)malloc(sizeof(char*) * nsubstr);

for (i=0; i<len; i++)
for (j=i; j<len; j++){

substrs[k] = (char*)malloc(sizeof(char) * (j-i+2));
strncpy(substrs[k], st+i, j-i+1);
k++;

}
for (i=0; i<k; i++)

printf("%s\n",substrs[i]);

This version uses much less memory compared to version 1

for (i=0; i<k; i++)
free(substrs[i]);

free(substrs);

So
lu

ti
on

: V
er

si
on

 3

Oct-15 23 Esc101, Pointers

int len, i, j, k=0,nsubstr;
char st[100], **substrs;
scanf("%s",st);
len = strlen(st);
nsubstr = len*(len+1)/2;
substrs = (char**)malloc(sizeof(char*) * nsubstr);

for (i=0; i<len; i++){
for (j=i; j<len; j++){

substrs[k] = strndup(st+i, j-i+1);
k++;

}
}
for (i=0; i<k; i++)

printf("%s\n",substrs[i]);

Less code => more readable, fewer bugs!
possibly faster!

for (i=0; i<k; i++)
free(substrs[i]);

free(substrs);

	Exercise
	NULL
	Pointers and Initialization
	With great power comes �great responsibility
	Typical dynamic allocation
	Dynamic memory management is similar to library management
	Pointer Declaration = Registration
	malloc = check out
	What if the book is not available?
	If the check out is successful
	If the check out is successful
	free = return the book
	Return the book
	Arrays and Pointers
	Precedence (Unary Refined)
	Array of Pointers
	Array of Pointers
	Exercise: All Substrings
	All Substrings: Solution Strategy
	Solution: Version 1
	Too much wastage…
	Solution: Version 2
	Solution: Version 3

