Exercise

@ Write a program that reads two integers, n and m,
and stores powers of n from O up to m (n°, n!, ..., n™)

#include<stdio.h>
#include<stdlib.h>
int main(){
int *pow, i, n, m;
scanf("%d %d", &n, &m); // m>= 0
pow = (int *) malloc ((m+1) * sizeof(int)):
pow[0] = 1;
for (i=1; i<=m; i++)
pow[i] = pow[i-1]*n;

for (i=0; i<=m; i++) Note that instead of
printf("%d\n", pow[i]): writing pow[i], we
return O; can also write
} *(pow + i)

Oct-15 Esc101, Pointers 1

NULL

A special pointer value to denote "points-to-
nothing”

#C uses the value O or name NULL

#In Boolean context, NULL is equivalent to
false, any other pointer value is equivalent
To true

A malloc call can return NULL if it is not
possible to satisfy memory request

» hegative or ZERO size argument
s TOO BIG size argument

Oct-15 Esc101, Pointers

Pointers and Initialization

#®Uninitialized pointer has GARBAGE value,
NOT NULL
Both malloc, calloc return\

‘$N\€m0f'y r'e.rur'ned bY a logically contiguous
. e ey g block of memory.
malloc is not initialized.

Calloc alsq clears-
#®Brothers Of malloc hemony-with-gefos- J

n calloc(n, size): allocates memory for n-element

array of size bytes each. Memory is initialized

to 0.
= realloc(ptr, size): changes the size of the

memory block pointed to by ptr to size bytes.

+ Complicated semantics, try to avoid.

Oct-15 Esc101, Pointers 3

With great power comes

great responsibility
®Power to allocate memory when & .0
needed must be complimented
by the responsibility to
de-allocate memory when no
longer needed!

» free unused pointers
#Be prepared to face re JZCTIOH
of demand %

s Check the return value of malloc
(and its variants)

Oct-15 Esc101, Pointers

Typical dynamic allocation
int *ar;

ar = (int*) malloc(...);

if (ar == NULL) { // =if (lar)
// take corrective measures OR
// return failure

}

:ar'[i]... // use of ar

Fr'ee(ar'): // free after last use of ar

ct-15 Esc101, Pointers

Dynamic memory management is
similar to library management

F’ —

Oct-15 Esc101, Pointers

Pointer Declaration =
Registration

int *ar;

Declare your
intent that
you will use
books from
the library

Oct-15 Esc101, Pointers

malloc = check out

. Reserve book(s) for
ar = (int*) malloc(.): your use

Oct-15 Esc101, Pointers

What if the book is not available?

if (ar == NULL) {
// take corrective measures
// OR return failure

}

Book not available:
Purchase the book?
Share with a friend?
Not study ®

Oct-15 Esc101, Pointers

If the check out is successful

..arf[i]... // use of ar

Read it.

Oct-15 Esc101, Pointers

10

If the check out is successful
br = ar; // copy the address

;.r[i] = ... // change the content

gr'[i] = ... // change the content indirectly

Share it.
Use it

Oct-15 Esc101, Pointers 11

free = return the book

free(ar); // free after last use of
// alloc’'ed memory

Your job is done,
return the book so

that others can use
1t

Oct-15 Esc101, Pointers

12

Return the book

br = ar;

;r'ee(br'): // free after last use
freef(ar):—// multiple free of same loc not allowed

Your friend can
also return the
book for you.

But a book can be
returned only once
per check out!

Oct-15 Esc101, Pointers 13

Arrays and Pointers

#®1In C,. array names are int ar[10], *b:
nothing but pointers.
= Can be used ar = ar + 2:X
interchangeably in most ,
cases S ar = b'x
#However, array names can b = ar: \/
not be GSS|gned but b=b+ 1/
pointer variables can be. /
= Array hame is not a variable. b=ar+ 2

nC
I't gets evaluated in b+ /

Oct-15 Esc101, Pointers 14

Precedence (Unary Refined)

* (deref) ++ -- | &+ -

()I

Array of Pointers

@ Consider the following declaration
int *arr[10];

®arr is a 10-sized array of pointers to
Integers

#®How can we have equivalent dynamic
array?

int **arr;
arr = (int **)malloc (10 * sizeof(int *)):

Oct-15 Esc101, Pointers 16

Array of Pointers

int **arr;
arr = (int **)malloc (10 * sizeof(int *)):

#®Note that individual elements in the array
arr (arr[0O], ... arr[9]) are NOT allocated
any space. Uninitialized.

#®We need to do it (directly or indirectly)
before using them.

int j;
for (J = 0: j < 10: j++)
arr[j] = (int*) malloc (sizeof(int));

Oct-15 Esc101, Pointers 17

Exercise: All Substrings

#®Read a string and create an array
containing all its substrings (i.e. contiguous).

®Display the substrings.
Input: ESC
Output: E

ES

ESC

S

SC

C

Oct-15 Esc101, Pointers

18

All Substrings: Solution Strategy

@ What are the possible substrings for a
string having length len?

®For 0<i<lenand foreveryi<j <len,
consider the substring between the it"
and jt"* index.

lenX(len+1)

® Allocate a 2D char array having
rows (Why ? How many columns?)

@ Copy the substrings into different rows
of this array.

Oct-15 Esc101, Pointers 19

int len, i, j, k=0, nsubstr;

char st[100], **substrs;
scanf("%s",st):;
len = strlen(st);
nsubstr = len*(len+1)/2;

substrs = (char**)malloc(sizeof(char*) * nsubstr);

for (i=0; i<nsubstr; i++)

substrs[i] = (char*)malloc(sizeof(char) * (len+1));

for (i=0; i<len; i++)
for (j=i; j<len; j++)X

strncpy(substrs[k], st+i, j-i+1);

k++:
}
}
for (i=0; i<k, i++)

printf("%s\n",substrs[i]):

Oct-15

Esc101, Pointers

for (i=0; i<k; i++)
free(substrs[i]);
free(substrs);

. Version 1

Solution

Too much wastage...

O W W | m|m,jm
/
Q

Oct-15 Esc101, Pointers

21

int len, i, j, k=0,nsubstr; char st[100], **substrs;

scanf("%s",st); N
len = strlen(st); g
nsubstr = len*(len+1)/2; N
substrs = (char**)malloc(sizeof(char*) * nsubstr); &
for (i=0:; i<len; i++) >
for (j=i; j<len; j++X =
substrs[k] = (char*)malloc(sizeof(char) * (j-i+2)): E
strncpy(substrs[k], st+i, j-i+1); 3
k++: ?)
} V)
for (i=0; i<k; i++)
printf("%s\n",substrs[i]): for (i=0; i<k; i++)
free(substrs[i]);
free(substrs);

This version uses much less memory compared to version 1
Oct-15 Esc101, Pointers 22

int len, i, j, k=0,nsubstr;

char st[100], **substrs; ™
scanf("%s",st); g
len = strlen(st); "N
nsubstr = len*(len+1)/2; C
substrs = (char**)malloc(sizeof(char*) * nsubstr); g
for (i=0; i<len; i++) -
for (j=i; j<len:; j++X E
substrs[k] = strndup(st+i, j-i+1); 3
k++: ?)
} U
} for (i=0; i<k; i++)
for (i=0; i<k; i++) free(substrs[i]):
printf("7%s\n", substrs[i]): free(substrs);

Less code == more readable, fewer bugs!
possibly faster!

Oct-15 Esc101, Pointers 23

	Exercise
	NULL
	Pointers and Initialization
	With great power comes �great responsibility
	Typical dynamic allocation
	Dynamic memory management is similar to library management
	Pointer Declaration = Registration
	malloc = check out
	What if the book is not available?
	If the check out is successful
	If the check out is successful
	free = return the book
	Return the book
	Arrays and Pointers
	Precedence (Unary Refined)
	Array of Pointers
	Array of Pointers
	Exercise: All Substrings
	All Substrings: Solution Strategy
	Solution: Version 1
	Too much wastage…
	Solution: Version 2
	Solution: Version 3

