
ESC101: Introduction to
Computing

f(unction)

Aug-15 1ESC101, Functions

A Modern Smartphone
• Surf the net

• Input: Web address
• Output: Desired page

• Book tickets
• Input: userid, password,

booking info, bank info
• Output: Ticket

• Send email
• Input: email address of

receiver, mail text
• Output: --

• Take photos
• Input: --
• Output: Picture

• Talk (we can do that too!!)
• Input: Phone number
• Output: Conversation (if

lucky)
• …

Aug-15 ESC101, Functions 2

Lots of related/unrelated task
to perform

Divide and Conquer
 Create well defined sub tasks
 Work on each task independently
Development, Enhancements, Debugging

Reuse of tasks.
 Email and Chat apps can share spell

checker.
 Phone and SMS apps can share dialer
C facilitates this using Functions

Aug-15 ESC101, Functions 3

Function
An independent, self-contained entity of a
C program that performs a well-defined
task.
It has
 Name: for identification
 Arguments: to pass information from outside

world (rest of the program)
 Body: processes the arguments do something

useful
 Return value: To communicate back to outside

world
 Sometimes not required

Aug-15 ESC101, Functions 4

Why use functions?

int main(){
int a, b, c, m;

/* code to read
* a, b, c */

if (a>b){
if (a>c) m = a;
else m = c;

}
else{
if (b>c) m = b;
else m = c;

}

/* print or use m */

return 0;
}

int max(int a, int b){
if (a>b)
return a;

else
return b;

}

int main() {
int a, b, c, m;

/* code to read
* a, b, c */

m = max(a, b);
m = max(m, c);
/* print or use m */

return 0;
}

Example : Maximum of 3 numbers

This code
can scale
easily to
handle
large
number
of inputs
(e.g.: max
of 100
numbers!)

Aug-15 ESC101, Functions 5

Why use functions?
Break up complex problem into small
sub-problems.
Solve each of the sub-problems
separately as a function, and combine
them together in another function.
The main tool in C for modular
programming.

Aug-15 ESC101, Functions 6

Advantages of using functions
Code Reuse: Allows us to reuse a piece of code as
many times as we want, without having to write it.
 Think of the printf function!

Procedural Abstraction: Different pieces of your
algorithm can be implemented using different
functions.
Distribution of Tasks: A large project can be
broken into components and distributed to multiple
people.
Easier to debug: If your task is divided into
smaller subtasks, it is easier to find errors.
Easier to understand: Code is better organized
and hence easier for an outsider to understand it.

Aug-15 ESC101, Functions 7

We have seen functions before

main() is a special function.
Execution of program starts
from the beginning of main().
scanf(…), printf(…) are standard
input-output library functions.
sqrt(…), pow(…) are math
functions in math.h

Aug-15 ESC101, Functions 8

Parts of a function

Input

Output

f

Aug-15 ESC101, Functions 9

int main () {
int x;
x = max(6, 4);
printf(“%d”,x);
return 0;

}

int max (int a, int b) {
if (a > b)

return a;
else

return b;
}

Return Type

Function Name

2 arguments
a and b,
both of type int.
(formal args)

Body of the
function, enclosed
inside { and }
(mandatory)
returns an int.

Call to the function.
Actual args are 6 and 4.

Aug-15 ESC101, Functions 10

Function Call
A function call is an expression
 feeds the necessary values to the

function arguments,
 directs a function to perform its task,

and
 receives the return value of the function.
Similar to operator application

5 + 3 is an expression
of type integer that
evaluates to 8 max(5, 3) is an expression

of type integer that
evaluates to 5

Aug-15 ESC101, Functions 11

Function Call
Since a function call is an expression
 it can be used anywhere an expression

can be used
 subject to type restrictions

printf(“%d”, max(5,3));
max(5,3) – min(5,3)
max(x, max(y, z)) == z

if (max(a, b)) printf(“Y”);

prints 5
evaluates to 2
checks if z is max
of x, y, z
prints Y if max of
a and b is not 0.

Aug-15 ESC101, Functions 12

Returning from a function:
Type

Return type of a function tells the
type of the result of function call
Any valid C type
 int, char, float, double, …
 void
Return type is void if the function is
not supposed to return any value

void print_one_int(int n) {
printf(“%d”, n);

}Aug-15 ESC101, Functions 13

Returning from a function:
return statement

If return type is not void, then the
function should return a value:

return return_expr;
If return type is void, the function
may fall through at the end of the
body or use a return without
return_expr:

return;
void print_positive(int n) {

if (n <= 0) return;
printf(“%d”, n);

}
Aug-15 ESC101, Functions 14

Returning through return

Fall through

Returning from a function:
return statement

When a return statement is
encountered in a function definition
 control is immediately transferred

back to the statement making the
function call in the parent function.

A function in C can return only ONE
value or NONE.
 Only one return type (including void)

Aug-15 ESC101, Functions 15

	ESC101: Introduction to Computing
	Slide Number 2
	Lots of related/unrelated task to perform
	Function
	Why use functions?
	Why use functions?
	Advantages of using functions
	We have seen functions before
	Parts of a function
	Slide Number 10
	Function Call
	Function Call
	Returning from a function: Type
	Returning from a function: return statement
	Returning from a function: return statement

