
ESC101: Introduction to
Computing

f(unction)

Aug-15 1ESC101, Functions

A Modern Smartphone
• Surf the net

• Input: Web address
• Output: Desired page

• Book tickets
• Input: userid, password,

booking info, bank info
• Output: Ticket

• Send email
• Input: email address of

receiver, mail text
• Output: --

• Take photos
• Input: --
• Output: Picture

• Talk (we can do that too!!)
• Input: Phone number
• Output: Conversation (if

lucky)
• …

Aug-15 ESC101, Functions 2

Lots of related/unrelated task
to perform

Divide and Conquer
 Create well defined sub tasks
 Work on each task independently
Development, Enhancements, Debugging

Reuse of tasks.
 Email and Chat apps can share spell

checker.
 Phone and SMS apps can share dialer
C facilitates this using Functions

Aug-15 ESC101, Functions 3

Function
An independent, self-contained entity of a
C program that performs a well-defined
task.
It has
 Name: for identification
 Arguments: to pass information from outside

world (rest of the program)
 Body: processes the arguments do something

useful
 Return value: To communicate back to outside

world
 Sometimes not required

Aug-15 ESC101, Functions 4

Why use functions?

int main(){
int a, b, c, m;

/* code to read
* a, b, c */

if (a>b){
if (a>c) m = a;
else m = c;

}
else{
if (b>c) m = b;
else m = c;

}

/* print or use m */

return 0;
}

int max(int a, int b){
if (a>b)
return a;

else
return b;

}

int main() {
int a, b, c, m;

/* code to read
* a, b, c */

m = max(a, b);
m = max(m, c);
/* print or use m */

return 0;
}

Example : Maximum of 3 numbers

This code
can scale
easily to
handle
large
number
of inputs
(e.g.: max
of 100
numbers!)

Aug-15 ESC101, Functions 5

Why use functions?
Break up complex problem into small
sub-problems.
Solve each of the sub-problems
separately as a function, and combine
them together in another function.
The main tool in C for modular
programming.

Aug-15 ESC101, Functions 6

Advantages of using functions
Code Reuse: Allows us to reuse a piece of code as
many times as we want, without having to write it.
 Think of the printf function!

Procedural Abstraction: Different pieces of your
algorithm can be implemented using different
functions.
Distribution of Tasks: A large project can be
broken into components and distributed to multiple
people.
Easier to debug: If your task is divided into
smaller subtasks, it is easier to find errors.
Easier to understand: Code is better organized
and hence easier for an outsider to understand it.

Aug-15 ESC101, Functions 7

We have seen functions before

main() is a special function.
Execution of program starts
from the beginning of main().
scanf(…), printf(…) are standard
input-output library functions.
sqrt(…), pow(…) are math
functions in math.h

Aug-15 ESC101, Functions 8

Parts of a function

Input

Output

f

Aug-15 ESC101, Functions 9

int main () {
int x;
x = max(6, 4);
printf(“%d”,x);
return 0;

}

int max (int a, int b) {
if (a > b)

return a;
else

return b;
}

Return Type

Function Name

2 arguments
a and b,
both of type int.
(formal args)

Body of the
function, enclosed
inside { and }
(mandatory)
returns an int.

Call to the function.
Actual args are 6 and 4.

Aug-15 ESC101, Functions 10

Function Call
A function call is an expression
 feeds the necessary values to the

function arguments,
 directs a function to perform its task,

and
 receives the return value of the function.
Similar to operator application

5 + 3 is an expression
of type integer that
evaluates to 8 max(5, 3) is an expression

of type integer that
evaluates to 5

Aug-15 ESC101, Functions 11

Function Call
Since a function call is an expression
 it can be used anywhere an expression

can be used
 subject to type restrictions

printf(“%d”, max(5,3));
max(5,3) – min(5,3)
max(x, max(y, z)) == z

if (max(a, b)) printf(“Y”);

prints 5
evaluates to 2
checks if z is max
of x, y, z
prints Y if max of
a and b is not 0.

Aug-15 ESC101, Functions 12

Returning from a function:
Type

Return type of a function tells the
type of the result of function call
Any valid C type
 int, char, float, double, …
 void
Return type is void if the function is
not supposed to return any value

void print_one_int(int n) {
printf(“%d”, n);

}Aug-15 ESC101, Functions 13

Returning from a function:
return statement

If return type is not void, then the
function should return a value:

return return_expr;
If return type is void, the function
may fall through at the end of the
body or use a return without
return_expr:

return;
void print_positive(int n) {

if (n <= 0) return;
printf(“%d”, n);

}
Aug-15 ESC101, Functions 14

Returning through return

Fall through

Returning from a function:
return statement

When a return statement is
encountered in a function definition
 control is immediately transferred

back to the statement making the
function call in the parent function.

A function in C can return only ONE
value or NONE.
 Only one return type (including void)

Aug-15 ESC101, Functions 15

	ESC101: Introduction to Computing
	Slide Number 2
	Lots of related/unrelated task to perform
	Function
	Why use functions?
	Why use functions?
	Advantages of using functions
	We have seen functions before
	Parts of a function
	Slide Number 10
	Function Call
	Function Call
	Returning from a function: Type
	Returning from a function: return statement
	Returning from a function: return statement

