
Nov-15 ESC101 Lab Exam 1

Final LAB Exam duration: 2hrs 45mins.

On Saturday, 7th Nov @ 2 PM
B1-6 (Mon/Tue Lab Batch).

Report at New Core Labs before 2pm.

On Sunday, 8th Nov @ 10 AM
B7-12 (Wed/Thu Lab Batch).
PH Category (all sections).

Report at New Core Labs before 10am.

Syllabus: Everything covered till Friday, 6th Nov.

ESC101: Introduction to
Computing
Data Structures

Queue

Link

Stack
Nov-15 Esc101, DataStructures 2

Data Structure
What is a data structure?
According to Wikipedia:
 … a particular way of storing and organizing

data in a computer so that it can be used
efficiently...

 … highly specialized to specific tasks.
Examples: array, a dictionary, a set, etc.

Nov-15 Esc101, DataStructures 3

Linked List
A linear, dynamic data structure,
consisting of nodes. Each node consists
of two parts:
 a “data" component, and
 a “next" component, which is a pointer to the

next node (the last node points to nothing).

Nov-15 Esc101, DataStructures 4

Linked List : A Self-referential structure
Example:
struct node {

int data;
struct node *next;

};

data

10

next

struct node

1. Defines the structure struct node, which will be used as a
node in a “linked list” of nodes.

2. Note that the field next is of type struct node *
3. If next was of type struct node, it could not be permitted

(recursive definition, of unknown or infinite size).

An example of a (singly) linked list structure is:

4 2 1 -2 NULL
head

Nov-15 Esc101, DataStructures 5

There is only one link (pointer) from each node,
hence, it is also called “singly linked list”.

Nov-15 Esc101, DataStructures 5

Linked Lists

4 2 1 -2 NULL
head

1. The list is modeled by a variable called head
that points to the first node of the list.

2. head == NULL implies empty list.
3. The next field of the last node is NULL.
4. Note that the name head is just a convention –

it is possible to give any name to the pointer to
first node, but head is used most often.

next field == NULL pointer
indicates the last node of the list

List starts at node
pointed to by head

Nov-15 Esc101, DataStructures 6

Displaying a Linked List

void display_list(struct node *head)
{
struct node *cur = head;
while (cur != NULL) {
printf("%d ", cur->data);
cur = cur->next;

}
printf("\n");

}

4 2 1 -2 NULL
head

OUTPUT

4 2 1 -2

Nov-15 Esc101, DataStructures 7

Inserting
at the
front of
the list.

1. Create a new node of type struct node. Set its
data field to the value given.

2. “Add’’ it to the front of the list:
Make its next pointer point to target of head.

3. Adjust head correctly to point to newnode.

newnode
8

4 2 1 -2 NULL
head

Insert at Front

Nov-15 Esc101, DataStructures 8

struct node *insert_front(int val, struct node *head) {
struct node *newnode= make_node(val);
newnode->next = head;
head = newnode;
return head;

}

struct node * make_node(int val) {
struct node *nd;
nd = (struct node *)

calloc(1, sizeof(struct node));
nd->data = val;
return nd;

}

/* Allocates new node
pointer and sets the
data field to val,
next field initialized
to NULL */

Nov-15 Esc101, DataStructures 9

/* Inserts a node with data field val at the head
of the list currently pointed to by head.
Returns pointer to the head of new list.
Works even when the original list is empty,

i.e. head == NULL */
Nov-15 Esc101, DataStructures 9

4 2 1 -2

NULL

head
8

Suppose we want to start with an empty list and insert in
sequence -2, 1,2, 4 and 8, as provided by user. The
following code gives an example. Final list should be as above.

struct node *head = NULL;
int val; scanf (“%d”, &val);
while (val != -1) {

insert_front (val, head);
scanf (“%d”, &val);

}

This creates the list in the reverse order of input: head
points to the last element inserted.
How to create list in the same order as input?

Nov-15 Esc101, DataStructures 10

INPUT: -2 1 2 4 8 -1

List
Insertion

5
Node to be
inserted
(given)

Given a node, insert it after a
specified node in the linked list.

If list is NULL
new list is:

head 5 NULL

If list is not
NULL
new list is:

Generic Insertion in linked list

4 2 1 -2 NULLhead

Original
List

Insert Here

Nov-15 Esc101, DataStructures 11

4 2 1 -2 N
U
L
L

head

Insertion of
node in list.

pcurr: Pointer to node after which insertion is to be made
pnew: Pointer to new node to be inserted.

5

struct node *insert_after_node (struct node *pcurr,
struct node *pnew) {

if (pcurr != NULL) {
// Order of next two stmts is important
pnew->next = pcurr->next;
pcurr->next = pnew;
return pcurr; // return the prev node

}
else return pnew; // return the new node itself

}

Given

Nov-15 Esc101, DataStructures 12

pcurr

pnew

Nov-15 13Esc101, DataStructures

Use of typedef
• Repetitive to keep writing the type struct node for

parameters, variables etc.
• C allows naming types— the typedef statement.

Listnode head, curr;
/* search in list for key */
Listnode search(Listnode list, int key);
/* insert the listnode n in front of listnode list */
Listnode insert_front(Listnode list, Listnode n);
/* insert the listnode n after the listnode curr */
Listnode insert_after(Listnode curr, Listnode n);

Defines a new type Listnode as struct node *

Listnode is a type. It can now be used in place
of struct node * for variables, parameters, etc..

typedef struct node * Listnode;

Deletion in linked list
Given a pointer to a node pnode that has to be deleted. Can
we delete the node?

E.g, delete node pointed to
by pnode

N
U
L
L

4 2 1 -2

pnode

call free() to release storage
for deleted node.

4 2 -2
N
U
L
Lpnode

(should be freed)
1

After deletion, we want the following state

Need pointer to
previous node to pnode
to adjust pointers.

ppnode

delete(Listnode pnode, Listnode ppnode) prototype
Nov-15 Esc101, DataStructures 14

Listnode delete(Listnode pnode, Listnode ppnode)
{

Listnode t;
if (ppnode)

ppnode->next = pnode->next;
t = ppnode ? ppnode : pnode->next;
free (pnode);
return t;

}

The case when
pnode is the head of
a list. Then ppnode
== NULL.

4

pnode

2
NULL

this
pointer is
returned

NULL
2

Delete the node pointed to by
pnode. ppnode is pointer to the
node previous to pnode in the
list, if such a node exists,
otherwise it is NULL.

Function returns ppnode if it
is non-null, else returns the
successor of pnode.

Nov-15 Esc101, DataStructures 15

	Slide Number 1
	ESC101: Introduction to Computing
	Data Structure
	 Linked List
	Slide Number 5
	Linked Lists
	Displaying a Linked List
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15

