
Nov-15 ESC101 Lab Exam 1

Final LAB Exam duration: 2hrs 45mins.

On Saturday, 7th Nov @ 2 PM
B1-6 (Mon/Tue Lab Batch).

Report at New Core Labs before 2pm.

On Sunday, 8th Nov @ 10 AM
B7-12 (Wed/Thu Lab Batch).
PH Category (all sections).

Report at New Core Labs before 10am.

Syllabus: Everything covered till Friday, 6th Nov.

Deletion in linked list
Given a pointer to a node pnode that has to be deleted. Can
we delete the node?

E.g, delete node pointed to
by pnode

N
U
L
L

4 2 1 -2

pnode

call free() to release storage
for deleted node.

4 2 -2
N
U
L
Lpnode

(should be freed)
1

After deletion, we want the following state

Need pointer to
previous node to pnode
to adjust pointers.

ppnode

delete(Listnode pnode, Listnode ppnode) prototype
Nov-15 Esc101, DataStructures 2

Listnode delete(Listnode pnode, Listnode ppnode)
{

Listnode t;
if (ppnode)

ppnode->next = pnode->next;
t = ppnode ? ppnode : pnode->next;
free (pnode);
return t;

}

The case when
pnode is the head of
a list. Then ppnode
== NULL.

4

pnode

2
NULL

this
pointer is
returned

NULL
2

Delete the node pointed to by
pnode. ppnode is pointer to the
node previous to pnode in the
list, if such a node exists,
otherwise it is NULL.

Function returns ppnode if it
is non-null, else returns the
successor of pnode.

Nov-15 Esc101, DataStructures 3

Listnode search(Listnode head, int key) {
Listnode curr = head;
if
(curr && curr->data != key)

curr = curr->next;

return curr;
}

curr = curr->next
step to next node

curr->data == key?
Does the current node

contain the key?

curr = head
start at head of list

curr== null?
Reached end

of list?

NO

Found!
return curr

NO

FAILED!
return curr

(NULL)

YES

YESsearch for key in a list
pointed to by head.
Return pointer to the
node found or else return
NULL.

Disadvantage:
Sequential access only.

Searching in LL

Nov-15 4Esc101, DataStructures

while

Nov-15 Esc101, DataStructures 4

1. Insertion and deletion are inexpensive, only a few
“pointer changes”.

2. To insert an element at position k in array:
create space in position k by shifting elements in
positions k or higher one to the right.

3. To delete element in position k in array:
compact array by shifting elements in positions k or
higher one to the left.

 The same numbers can be represented in an array. So,
where is the advantage?

 Direct access to kth position in a list is expensive (time
proportional to k) but is fast in arrays (constant time).

Disadvantages of Linked List

Why linked lists

Nov-15 Esc101, DataStructures 5

Linked Lists: the pros and the cons
1 2 3 4 NULL

list

Operation Singly Linked List Arrays
Arbitrary
Searching.

sequential search
(linear-time)

sequential search
(linear-time)

Sorted
structure.

Still sequential
search. Cannot
take advantage.

Binary search possible
(logarithmic-time)

Insert key
after a given
point in
structure.

Very quick
(constant-time)

Shift all array elements at
insertion index and later one
position to right. Make room,
then insert. (linear-time)

1 2 3 4array

Nov-15 Esc101, DataStructures 6

Singly Linked Lists

Operation Singly Linked List
Find next node Follow next field
Find previous node Can’t do !!
Insert before a
node

Can’t do !!

Insert in front Easy, since there is a
pointer to head.

Operations on a linked list. For each operation, we
are given a pointer to a current node in the list.

Principal Inadequacy: Navigation is one-way only
from a node to the next node.

Nov-15 Esc101, DataStructures 7

Nov-15 8Esc101, DataStructures

Doubly linked lists
head tail

4 2 7 -1

(ii)
data

(i) pointer
to previous
node

(iii) pointer
to next
node

Each
node

has 3
fields

struct dlnode {
int data;
struct dlnode *next;
struct dlnode *prev;

};
typedef struct dlnode *Ndptr;

Defining node of Doubly linked list and the Dllist itself.

struct dlList {
Ndptr head;/*first node */
Ndptr tail; /* last node */

};
typedef struct dlList *DlList;

NULL

NULL

Data structures, Stack and
Queue, can also be implemented
using Linked Lists!

Nov-15 Esc101, DataStructures 9

Stack
A linear data structure where addition
and deletion of elements can happen at
one end of the data structure only.
 Last-in-first-out.
 Only the top most element is

accessible at any point of time.
Operations:
 Push: Add an element to the top

of the stack.
 Pop: Remove the topmost element.
 IsEmpty: Checks whether the

stack is empty or not.
Nov-15 Esc101, DataStructures 10

2 1 -2

NULL

head

Push 4,8 in stack: insert_front(4, head);
insert_front(8, head);

Pop from stack: val = head->data;
delete(head,NULL);

isEmpty function: return !head ;
Nov-15 Esc101, DataStructures 11

4 2 1 -2

NULL

head
8

STACK

4 2 1 -2

NULL

head

Queue
A linear data structure where
addition happens at one end
(`back') and deletion happens
at the other end (`front')
 First-in-first-out
 Only the element at the front of the queue is

accessible at any point of time
Operations:
 Enqueue: Add element to the back
 Dequeue: Remove element from the front
 IsEmpty: Checks whether the queue is empty

or not.
Nov-15 Esc101, DataStructures 12

2 1 -2

NULL

head

Enqueue 4: //make a node pnew with data=4
insert_after_node(tail, pnew);

Dequeue: val = head->data;
delete(head,NULL);

isEmpty function: return !head ;
Nov-15 Esc101, DataStructures 13

2 1 -2 4

NULL

head

QUEUE

1 -2 4

NULL

head

Circular Linked List

Nov-15 15Esc101, DataStructures

So far, we were modeling a singly linked list by a
pointer to the first node of the list.
Let us make the following change:

Make the list circular: next pointer of last node is
not NULL, it points to the head node.

4 2 1 -2

head

4

head head

NULL

Nov-15 16Esc101, DataStructures

Binary Tree

(ii)
data

(i) pointer to
left child nodeEach node has 3 fields

typedef struct _btnode *Btree;
struct _btnode {

int data;
Btree left;
Btree right;

};

Defining Binary Tree

(iii) pointer to
right child node

NULL

1

4

7

-1

root

3

NULL NULL NULLNULL

13

NULL NULL

Btree root;

Traversing a Binary Tree
Visit each node in the
binary tree exactly once
Easy to traverse
recursively
Three common ways of
visit
 inorder: left, root, right
 preorder: root, left, right
 postorder: left, right, root

Nov-15 17 Esc101, Recursion

void inorder(tree t)
{

if (t == NULL) return;
inorder(t->left);
process(t->data);
inorder(t->right);

}

Stack entries use an
extra field – visited

Recursion vs Iteration

void inorder(tree t)
{

if (!t) return;

inorder(t->left);
process (t->data);
inorder(t->right);

}

void inorder(tree t) {
stack s;
push(s,t);
while (!empty(s)) {

curr = top(s);
if (curr) {

if (!curr->visited) {
push(s,curr->left);

} else {
process(curr->data);
pop(s);
push(s,curr->right);

}

} else {
pop(s);
if (!empty(s))

top(s)->visited = true;
}

}
}

* Disclaimer: Code not tested!
Nov-15 Esc101, Recursion 18

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Stack
	Slide Number 11
	Queue
	Slide Number 13
	Circular Linked List
	Slide Number 15
	Slide Number 16
	Traversing a Binary Tree
	Recursion vs Iteration

