
General Form of switch-case
switch (selector-expr) {
case label1: s1; break;
case label2: s2; break;
...
case labelN: sN; break;
default : sD;
}

Aug-15 1Esc101, Programming

• default is optional. (= remaining cases)
• The location of default does not matter.
• The statements following a case label

are executed one after other until a
break is encountered (Fall Through)

Expr only of type
INT
Execution starts at
the matching case.

Fall Through…int n = 100;
int digit = n%10; // last digit
switch (digit) {
default : printf(“Not divisible by 5\n”);

break;
case 0: printf(“Even\n”);
case 5: printf(“Divisible by 5\n”);

break;
}

Aug-15 2Esc101, Programming

Answer:
Even
Divisible by 5;

What is printed by the
program fragment?

Class Quiz 3
What is the value of expression:

a) Compile time error

b) Run time crash

c) I don’t know / I don’t care

d) 0

e) 1
Aug-15 3Esc101, Programming

(5<2) && (3/0)

The correct answer is

Short-circuit Evaluation

Do not evaluate the second operand
of binary logical operator if result can
be deduced from first operand
 Arguments of && and || are evaluated

from left to right (in sequence)
 Also applies to nested logical operators

!((2>5) && (3/0)) || (4/0)
Evaluates to 1

Aug-15 4Esc101, Programming

0 01 1

3 Factors for Expr Evaluation
Precedence
 Applied to two different class of operators
 + and *, - and *, && and ||, + and &&, …
Associativity
 Applied to operators of same class
 * and *, + and -, * and /, …
Order of evaluation
 Precedence and associativity identify the

operands for each operator (Parenthesization)
 Not which operand/expr is evaluated first
Beware: In C, order of evaluation of
operands is defined only for && and || 5

Unmatched if and else

Aug-15 6Esc101, Programming

if ((a != 0) && (b != 0))
if (a * b >= 0)

printf (“positive”);
else

printf(“negative”);

if ((a != 0) && (b != 0))
if (a * b >= 0)

printf (“positive”);
else

printf(“zero”);

OUTPUT for a = 5, b = 0
NO OUTPUT!!

OUTPUT for a = 5, b = -5
zero

OUTPUT for a = 5, b = 0
NO OUTPUT!!

OUTPUT for a = 5, b = -5
negative

Unmatched if and else
An else always matches closest
unmatched if
 Unless forced otherwise using { … }

Aug-15 7Esc101, Programming

if (cond1)
if (cond2)

…
else

…

if (cond1) {
if (cond2)

…
else

…
}

Unmatched if and else
An else always matches closest
unmatched if
 Unless forced otherwise using { … }

Aug-15 8Esc101, Programming

if (cond1)
if (cond2)

…
else

…

if (cond1) {
if (cond2)

…
}
else

…

ESC101: Introduction to
Computing

Loops

Aug-15 9Esc101, Programming

Printing Multiplication Table
5 X 1 = 5
5 X 2 = 10
5 X 3 = 15
5 X 4 = 20
5 X 5 = 25
5 X 6 = 30
5 X 7 = 35
5 X 8 = 40
5 X 9 = 45
5 X 10 = 50

Aug-15 10Esc101, Programming

Program…

Aug-15 11Esc101, Programming

int n;
scanf(“%d”, &n);
printf(“%d X %d = %d”, n, 1, n*1);
printf(“%d X %d = %d”, n, 2, n*2);
printf(“%d X %d = %d”, n, 3, n*3);
printf(“%d X %d = %d”, n, 4, n*4);
….

Too much
repetition!
Can I avoid

it?

Print n x i = ni
i = i+1

Input n
i = 1

i <=10
TRUE FALSE

Printing Multiplication Table

Aug-15 12Esc101, Programming

Stop

Loop

Loop Entry

Loop Exit

Printing Multiplication Table

Aug-15 13Esc101, Programming

scanf(“%d”, &n);
int i = 1;

while (i <= 10) {
printf(“%d X %d = %d”,

n, i, n*i);
i = i + 1;

}

// loop exited!

Print n x i = ni
i = i+1

Input n
i = 1

TRUE FALSE
i <=10

Stop

While Statement

Read in English as:
As long as expression is TRUE execute

statement1.
when expression becomes FALSE execute

statement 2.
Aug-15 14Esc101, Programming

while (expression)
statement1;

statement2;
FALSE

TRUE

statement1

expression

statement2

While Statement

1.Evaluate expression
2.If TRUE then

a) execute statement1
b) goto step 1.

3.If FALSE then execute statement2.
Aug-15 15Esc101, Programming

while (expression)
statement1;

statement2;
FALSE

TRUE

statement1

expression

statement2

Example 1
1.Read a sequence of integers from the

terminal until -1 is read.
2. Output sum of numbers read, not

including the -1..
First, let us write the loop, then add code for sum.

Aug-15 16Esc101, Programming

int a;
scanf(“%d”, &a); /* read into a */
while (a != -1) {

scanf(“%d”, &a); /* read into a inside loop*/
}

Tracing the loop

Aug-15 17Esc101, Programming

int a;
scanf(“%d”, &a); /* read into a */
while (a != -1) {

scanf(“%d”, &a); /*read into a inside loop*/
}

INPUT
4
15
-5
-1

??415-5-1 Trace of memory
location a

• One scanf is executed every time body of
the loop is executed.

• Every scanf execution reads one integer.

Add numbers until -1
Keep an integer variable s.
s is the sum of the numbers seen
so far (except the -1).

Aug-15 18Esc101, Programming

int a;
int s;
s = 0; // not seen any a yet
scanf(“%d”, &a); // read into a
while (a != -1) {

s = s + a; // last a is not -1
scanf(“%d”, &a); // read into a inside loop

}
// one could print s here etc.

Terminology
Iteration: Each run of the loop is called an
iteration.
 In example, the loop runs for 3 iterations,

corresponding to inputs 4, 15 and -5.
 For input -1, the loop is exited, so there is no

iteration for input -1.
3 components of a while loop
 Initialization

 first reading of a in example
 Condition (evaluates to a Boolean value)

 a != -1
 Update

 another reading of a
Aug-15 19Esc101, Programming

scanf(“%d”, &a); /* read into a */

while (a != -1) {
s = s + a;
scanf(“%d”, &a); /*read into a inside loop*/

}
// INPUTS: 4 15 -5 -1

Common Mistakes
Initialization is not done
 Incorrect results. Might give error.
Update step is skipped
 Infinite loop: The loop goes on

forever. Never terminates.
 Our IDE will exit with “TLE” error

(Time Limit Exceeded)
 The update step must take the

program towards the condition
evaluating to false.

Incorrect termination condition
 Early or Late exit (even infinite loop).

Aug-15 20Esc101, Programming

Practice Problem
Given a positive integer n, print all the
integers less than or equal to n that
are divisible by 3 or divisible by 5
Hint: Two conditions will be used:
 x <= n
 (x%3 == 0) || (x%5 == 0)

Aug-15 21Esc101, Programming

Aug-15 22Esc101, Programming

int n; int x;
scanf(“%d”, &n); // input n

x = 1; // [while] initialization
while (x <= n) { // [while] cond

if ((x%3 == 0) || (x%5 == 0)) { // [if] cond
printf(“%d\n”, x);

}

x = x+1; // [while] update
}

	General Form of switch-case
	Fall Through…
	Class Quiz 3
	Short-circuit Evaluation
	3 Factors for Expr Evaluation
	Unmatched if and else
	Unmatched if and else
	Unmatched if and else
	ESC101: Introduction to Computing
	Printing Multiplication Table
	Program…
	Printing Multiplication Table
	Printing Multiplication Table
	While Statement
	While Statement
	Example 1
	Tracing the loop
	Add numbers until -1
	Terminology
	Common Mistakes
	Practice Problem
	Slide Number 22

