
General Form of switch-case
switch (selector-expr) {
case label1: s1; break;
case label2: s2; break;
...
case labelN: sN; break;
default : sD;
}

Aug-15 1Esc101, Programming

• default is optional. (= remaining cases)
• The location of default does not matter.
• The statements following a case label 

are executed one after other until a 
break is encountered (Fall Through)

Expr only of type 
INT
Execution starts at 
the matching case.



Fall Through…int n = 100;
int digit = n%10; // last digit
switch (digit) {
default : printf(“Not divisible by 5\n”);

break; 
case 0: printf(“Even\n”);
case 5: printf(“Divisible by 5\n”);

break;
}

Aug-15 2Esc101, Programming

Answer:
Even
Divisible by 5;

What is printed by the 
program fragment?



Class Quiz 3
What is the value of expression:

a) Compile time error

b) Run time crash

c) I don’t know / I don’t care

d) 0

e) 1
Aug-15 3Esc101, Programming

(5<2) && (3/0)

The correct answer is 



Short-circuit Evaluation

Do not evaluate the second operand 
of binary logical operator if result can 
be deduced from first operand
 Arguments of && and || are evaluated 

from left to right (in sequence)
 Also applies to nested logical operators

!( (2>5) &&  (3/0) ) || (4/0)
Evaluates to 1

Aug-15 4Esc101, Programming

0 01 1



3 Factors for Expr Evaluation
Precedence
 Applied to two different class of operators
 + and *, - and *, && and ||, + and &&, …
Associativity
 Applied to operators of same class
 * and *, + and -, * and /, …
Order of evaluation
 Precedence and associativity identify the 

operands for each operator (Parenthesization)
 Not which operand/expr is evaluated first
Beware: In C, order of evaluation of 
operands is defined only for && and || 5



Unmatched if and else

Aug-15 6Esc101, Programming

if ((a != 0) && (b != 0))
if (a * b >= 0) 

printf (“positive”);
else 

printf(“negative”);

if ((a != 0) && (b != 0))
if (a * b >= 0) 

printf (“positive”);
else 

printf(“zero”);

OUTPUT for a = 5, b = 0
NO OUTPUT!!

OUTPUT for a = 5, b = -5
zero

OUTPUT for a = 5, b = 0
NO OUTPUT!!

OUTPUT for a = 5, b = -5
negative



Unmatched if and else
An else always matches closest 
unmatched if
 Unless forced otherwise using { … }

Aug-15 7Esc101, Programming

if (cond1)
if (cond2) 

…
else 

…

if (cond1) {
if (cond2) 

…
else 

…
}



Unmatched if and else
An else always matches closest 
unmatched if
 Unless forced otherwise using { … }

Aug-15 8Esc101, Programming

if (cond1)
if (cond2) 

…
else 

…

if (cond1) {
if (cond2) 

…
}
else 

…



ESC101: Introduction to 
Computing

Loops  

Aug-15 9Esc101, Programming



Printing Multiplication Table
5 X 1 = 5
5 X 2 = 10
5 X 3 = 15
5 X 4 = 20
5 X 5 = 25
5 X 6 = 30
5 X 7 = 35
5 X 8 = 40
5 X 9 = 45
5 X 10 = 50

Aug-15 10Esc101, Programming



Program…

Aug-15 11Esc101, Programming

int n;
scanf(“%d”, &n);
printf(“%d X %d = %d”, n, 1, n*1);
printf(“%d X %d = %d”, n, 2, n*2);
printf(“%d X %d = %d”, n, 3, n*3);
printf(“%d X %d = %d”, n, 4, n*4);
….

Too much 
repetition!
Can I avoid 

it?



Print n x  i = ni
i = i+1

Input n
i = 1

i <=10
TRUE FALSE

Printing Multiplication Table

Aug-15 12Esc101, Programming

Stop

Loop

Loop Entry

Loop Exit



Printing Multiplication Table

Aug-15 13Esc101, Programming

scanf(“%d”, &n);
int i = 1;

while (i <= 10) {
printf(“%d X %d = %d”,

n, i, n*i);
i = i + 1;

}

// loop exited!

Print n x  i = ni
i = i+1

Input n
i = 1

TRUE FALSE
i <=10

Stop



While Statement

Read in English as:  
As long as expression is TRUE execute 

statement1. 
when expression becomes FALSE execute 

statement 2.
Aug-15 14Esc101, Programming

while (expression)
statement1;

statement2;
FALSE

TRUE

statement1

expression

statement2



While Statement

1.Evaluate expression
2.If TRUE then 

a) execute statement1
b) goto step 1.

3.If FALSE then execute statement2.
Aug-15 15Esc101, Programming

while (expression)
statement1;

statement2;
FALSE

TRUE

statement1

expression

statement2



Example 1
1.Read a sequence of integers from the 

terminal until -1 is read.
2. Output  sum of numbers read, not 

including the -1..
First, let us write the loop, then add code for  sum.

Aug-15 16Esc101, Programming

int a;
scanf(“%d”, &a);                /* read into a */
while ( a !=  -1) {

scanf(“%d”, &a);    /* read into a inside loop*/
}



Tracing the loop

Aug-15 17Esc101, Programming

int a;
scanf(“%d”, &a);                /* read into a */
while ( a !=  -1) {

scanf(“%d”, &a);  /*read into a inside loop*/
}

INPUT
4 
15
-5
-1

??415-5-1 Trace of memory
location a

• One scanf is executed every time body of 
the loop is executed.

• Every scanf execution reads one integer.



Add numbers until -1
Keep an integer variable s. 
s is the sum of the numbers seen 
so far (except the -1). 

Aug-15 18Esc101, Programming

int a;
int s; 
s = 0; // not seen any a yet
scanf(“%d”, &a);      // read into a
while (a !=  -1) {

s = s + a; // last a is not -1    
scanf(“%d”, &a);  // read into a inside loop

}
// one could print s here etc.



Terminology         
Iteration: Each run of the loop is called an 
iteration.
 In example, the loop runs for 3 iterations, 

corresponding to inputs 4, 15 and -5. 
 For input -1, the loop is exited, so there is no 

iteration for input -1.
3 components of a while loop
 Initialization 

 first reading of a in example
 Condition (evaluates to a Boolean value)

 a != -1
 Update

 another reading of a
Aug-15 19Esc101, Programming

scanf(“%d”, &a);      /* read into a */

while (a !=  -1) {
s = s + a;
scanf(“%d”, &a);  /*read into a inside loop*/

}
// INPUTS:   4     15     -5      -1



Common Mistakes
Initialization is not done
 Incorrect results. Might give error.
Update step is skipped
 Infinite loop: The loop goes on 

forever. Never terminates.
 Our IDE will exit with “TLE” error 

(Time Limit Exceeded)
 The update step must take the 

program towards the condition 
evaluating to false.

Incorrect termination condition
 Early or Late exit (even infinite loop).

Aug-15 20Esc101, Programming



Practice Problem
Given a positive integer n, print all the 
integers less than or equal to n that 
are divisible by 3 or divisible by 5
Hint: Two conditions will be used:
 x <= n
 (x%3 == 0) || (x%5 == 0) 

Aug-15 21Esc101, Programming



Aug-15 22Esc101, Programming

int n; int x;
scanf(“%d”, &n);  // input n

x = 1; // [while] initialization
while ( x <= n) { // [while] cond

if ((x%3 == 0) || (x%5 == 0)) { // [if] cond
printf(“%d\n”, x);

}

x = x+1; // [while] update
}


	General Form of switch-case
	Fall Through…
	Class Quiz 3
	Short-circuit Evaluation
	3 Factors for Expr Evaluation
	Unmatched if and else
	Unmatched if and else
	Unmatched if and else
	ESC101: Introduction to Computing
	Printing Multiplication Table
	Program…
	Printing Multiplication Table
	Printing Multiplication Table
	While Statement
	While Statement
	Example 1
	Tracing the loop
	Add numbers until -1
	Terminology         
	Common Mistakes
	Practice Problem
	Slide Number 22

