
Searching in an Array
We can have other recursive formulations
Search1: search (a, start, end, key)
 Search key between a[start]…a[end] 

if start > end, return 0;
if a[start] == key, return 1;
return search(a, start+1, end, key);
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Searching in an Array
One more recursive formulations
Search2: search (a, start, end, key)
 Search key between a[start]…a[end] 

if start > end, return 0;
mid = (start + end)/2 ;
if a[mid]==key, return 1;
return search(a, start, mid-1, key) 

|| search(a, mid+1, end, key);
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Estimating the Time taken
Two types of operations
 Function calls
 Other operations (call them simple

operations)
Assume each simple operation takes fixed 
amount of time (1 unit) to execute
 Really a very crude assumption, but will 

simplify calculations
Time taken by a function call is 
proportional to the number of operations 
performed  by the call before returning.
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Estimating the Time taken

Search1
 Let T(n) denote the time taken by search on 

an array of size n.
 Line 1 takes 1 unit (or 2 units if you consider 

if check and return as two operations)
 Line 2 takes 1 unit (or 3 units if you consider 

if check, array access and return as three 
operations)

 But what about line 3?
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1. if start > end, return 0;
2. if a[start] == key, return 1;
3. return search(a, start+1, end, key);



Estimating the Time taken

Search1
 What about line 3?
 Remember the assumption: Let T(n) 

denote the time taken by search on an 
array of size n.

 Line 3 is searching in n-1 sized array   
=> takes T(n-1) units

 But what about the value of T(n) ?
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1. if start > end, return 0;
2. if a[start] == key, return 1;
3. return search(a, start+1, end, key);



Estimating the Time taken

Search1
 But what about the value of T(n) ?
 Looking at the body of search, and the 

information we gathered on previous 
slides, we can come up with a 
recurrence relation:

 We need to solve the recurrence to get 
the estimate of time
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1. if start > end, return 0;
2. if a[start] == key, return 1;
3. return search(a, start+1, end, key);

T(n) = 1 + 1 + T(n-1)T(n) = 2 + 3 + T(n-1)T(n) = T(n-1) + C  



Estimating the Time taken
Search1
 Solution to the recurrence?

 The worst case run time of Search1 is 
proportional to the size of array
 Bigger the array, slower the search 

 What is the best case run time?
 Which one is more important to 

consider?
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1. if start > end, return 0;
2. if a[start] == key, return 1;
3. return search(a, start+1, end, key);

T(n) = T(n-1) + C , T(0) = C 
T(n) = Cn



Estimating the Time taken
Search2
 Recurrence?

 Solution?

 The worst case run time of Search2 is 
also proportional to the size of array
 Can we do better?
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if start > end, return 0;
mid = (start + end)/2 ;
if a[mid]==key, return 1;
return search(a, start, mid-1, key) 

|| search(a, mid+1, end, key);



Yes, provided the elements in the array 
are sorted 
 in either ascending or descending order

Let us take an example. We have an array of 
numbers, sorted in non-descending order.

some numbers can be repeated, like 4 in duckie[]
int duckie [] = {1,2,4,4,5,6,7};

To illustrate the idea, consider searching 
for the number 6 in the array.

Can we search Faster?
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Keep two indices, left and right. 
Initially left is 0 and right is the rightmost 
index in the array. Here right is 6.

duckie rightleft

0 6

Initialization

The key that is being searched for  lies  in 
between the indices left and right in the 
array duckie[] (both ends included), if at all 
it is in the array.

Invariant

key

6

searching 
for key 6
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Calculate the middle 
index of left and right

duckie rightleft
0 6

Procedure

The key lies between 
the indices left and 
right in the array 
duckie[], if at all it is 
in the array.

Invariant

key
6

mid =( left + right)/2 

Compare duckie[mid] with key.
There are 3 possible outcomes.

mid

duckie[mid] == key
Key is found. 
return mid. 

Key may lie between 
duckie[mid+1] and 
duckie[right].

Key may lie between 
duckie[left] and 
duckie[mid-1].

duckie[mid] == key duckie[mid] < key
duckie[mid] > key
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Calculate the middle 
index of left and right

duckie rightleft
0 6

key
6

mid =( left + right)/2 

Compare duckie[mid] with key.
There are 3 possible outcomes.

mid

duckie[mid] == key
Key is found. 
return mid. 

Key may lie between 
duckie[left] and 
duckie[mid-1].

Key may lie between 
duckie[mid+1] and 
duckie[right].

duckie[mid] == key duckie[mid] < key
duckie[mid] > key

Let us trace the
procedure on the
duckie array

Sep-15 Esc101, Recursion 12 



2 4 4 5 61 7

duckie rightleft
0 6

key
6

mid = ( 0 + 6)/2 

Compare duckie[3] with key.

mid

Calculate mid:

mid is 3

3
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duckie rightleft
0 6

key
6

mid

1.compare duckie[mid] with key. 

2.duckie[mid] is 4,key is 6.

3.4 < 6 so key may only lie among 
duckie[mid+1] to duckie[right]

3

What to do now?
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duckie rightleft
0 6

key
6

mid

1.We know for sure that key does 
not lie in the index range 0..mid.

2.So we can set left to mid+1.

3.Continue the loop…

3
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duckie rightleft
4 6

key
6

mid
5

1.Continuing…

2.mid = (left+right)/2. So mid is 5.

3.Now duckie[5] is 6, so we have 
found the key.
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duckie rightleft
4 6

key
6

mid
5

1.We have found the key, so we can 
return the index 5.

2.Let us complete the flow of 
procedure.
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Calculate the middle 
index of left and right

mid =( left + right)/2 

Compare duckie[mid] with key.
There are 3 possible outcomes.

(duckie[mid] == 
key) is TRUE.
Key is found. 
return mid. STOP 

Key may lie between 
duckie[0] and 
duckie[mid-1].

Key may lie between 
duckie[mid+1] and 
duckie[right].

duckie[mid] == keyduckie[mid] > key duckie[mid] < key

right = mid-1; left = mid+1;

left=0; right = n-1

Something is still missing…
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duckie rightleft
0 6

key
9

mid

Let us search for 9 in this array.

Key is 9
Initial values: left is 0, 

mid is  undefined,
right is 6. 
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duckie rightleft
0 6

key
9

mid

searching for 9.

Set mid to mid =  (left+right)/2. 
mid is 3. Compare duckie[mid] with key. 
duckie[mid] is 4, key is 9 and 4<9.

3

So we have to move right, meaning
left is set to mid+1.
So left will be 4.
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duckie rightleft
4 6

key
9

mid
search for 9

Set mid to (left+right)/2. So mid is (4+6)/2 
equals 5.
Compare duckie[mid] with key. 
duckie[mid] is 6, key is 9 and 6<9.

5

So, we have to move right again.
Set left to mid +1, so left becomes 6. 
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duckie rightleft
6 6

key
9

mid
search for 9

Set mid to mid =  (left+right)/2. 
So mid is (6+6)/2 equals 6.
Compare duckie[mid] with key. duckie[mid] is 7, 
key is 9 and 7<9.

6

So, we have to move right again.
Set left to mid +1, so left becomes 7. 

We continue…
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duckie rightleft
7 6

key
9

mid
search for 9

6

We continue…

By invariant, item is 
there between
duckie[left] and duckie
[right] so long as 
left <= right.

left is 7, right is 6.
The two ends have crossed over.
So the item is not there in the 
array!

OK, so another condition when the loop 
terminates is left > right. Is there any other 
termination condition? Can we search for 3?

NOT FOUND!
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duckie rightleft
0 6

key
3

mid

Searching for 3 in this array.

1. left is 0, right is 6.
2. mid is (0+6)/2 which is 3.
3. duckie[mid] is 4, key is 3, so we have to move 

left.
4. right will be set to mid-1.
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duckie rightleft
0 2

key
3 1

mid

Searching for 3 in this array.

1. left is 0, right is 2.
2. mid is (0+2)/2 which is 1. 
3. duckie[mid] is 2  , key is 3, so we have to 

move right.
4. left will be set to mid+1.
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duckie rightleft
2 2

key
3 2

mid

Searching for 3 in this array.

1. left is mid+1 which is 2, right is 2.
2. Now mid is (2+2)/2 which is 2.
3. duckie[mid] is 4  , key is 3, so we have to 

move left.
4. right  will be set to mid-1,So right will be 1.
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duckie rightleft
2 1

key
3 1

mid

Searching for 3 in this array.

1.left is 2, right is 1.
2.Left and right have crossed over, 

NOT FOUND!
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Binary Search for Sorted Arrays
binsearch(a, start, end, key)
 Search key between a[start]…a[end], where a 

is a sorted (non-decreasing) array 
if start > end, return 0; 
mid = (start + end)/2 ;
if a[mid]==key, return 1;
if (a[mid] > key) 

return binsearch(a, start, mid-1, key); 
else  return binsearch(a, mid+1, end, key);
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Wait, isn’t this same as search2?
Lets look closely
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int binsearch(a, start, end, key) {
if start > end, return 0; 
mid = (start + end)/2 ;
if a[mid]==key, return 1;
if (a[mid] > key) 

return binsearch(a, start, mid-1, 
key); 

else  return binsearch(a, mid+1, end, key);
}

int search2(a, start, end, key) {
if start > end, return 0;
mid = (start + end)/2 ;
if a[mid]==key, return 1;
return search2(a, start, mid-1, key) 

|| search2(a, mid+1, end, key);
}

In worst case,
Both search2 may fire.
But, only ONE of the two 
binsearch will fire.
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How does it matter? It matters for 
the time taken!



Estimating the Time taken

binsearch
 Recurrence?

 Solution?

 The worst case run time of binsearch is 
proportional to the log of the size of array
Much faster than Search/Search1/Search2 for 

large arrays
 Remember:  It works for SORTED arrays only
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T(n) = T(n/2) + C  

if start > end, return 0; 
mid = (start + end)/2 ;
if a[mid]==key, return 1;
if (a[mid] > key) 

return binsearch(a, start, mid-1, key); 
else  return binsearch(a, mid+1, end, key);



Some problems related to binary search

Given a key, find its successor (predecessor) in 
the array. That is, find the smallest (largest) 
value larger (smaller) than the given key that 
occurs in the array. 

Given a sorted array, find the left-most 
(right-most) occurrence of a key.

1. Find an occurrence  of the key and then sequentially go 
left (for predecessor) or go right (for successor).

2. Why?
3. because this may have linear complexity. Solve the 

problem as efficiently as binary search, that is, number 
of comparisons is bounded by constant times log(n).

4. Also the given key may not exist in the array. 

You are not allowed to:



Recursion vs Iteration
int fib(int n)
{ 

int first = 0, second = 1;
int next, c; 
if (n <= 1) 

return n;
for ( c = 1; c < n ; c++ ) { 

next = first + second; 
first = second; 
second = next; 

} 
return next; 

}

int fib(int n) 
{ 

if ( n <= 1 ) 
return n; 

else 
return fib(n-1) + fib(n-2); 

} 
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The recursive program is 
closer to the definition 

and easier to read.

But very very
inefficient
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