
Searching in an Array
We can have other recursive formulations
Search1: search (a, start, end, key)
 Search key between a[start]…a[end]

if start > end, return 0;
if a[start] == key, return 1;
return search(a, start+1, end, key);

Sep-15 1 Esc101, Recursion

Searching in an Array
One more recursive formulations
Search2: search (a, start, end, key)
 Search key between a[start]…a[end]

if start > end, return 0;
mid = (start + end)/2 ;
if a[mid]==key, return 1;
return search(a, start, mid-1, key)

|| search(a, mid+1, end, key);
Sep-15 2 Esc101, Recursion

Estimating the Time taken
Two types of operations
 Function calls
 Other operations (call them simple

operations)
Assume each simple operation takes fixed
amount of time (1 unit) to execute
 Really a very crude assumption, but will

simplify calculations
Time taken by a function call is
proportional to the number of operations
performed by the call before returning.

Sep-15 3 Esc101, Recursion

Estimating the Time taken

Search1
 Let T(n) denote the time taken by search on

an array of size n.
 Line 1 takes 1 unit (or 2 units if you consider

if check and return as two operations)
 Line 2 takes 1 unit (or 3 units if you consider

if check, array access and return as three
operations)

 But what about line 3?

Sep-15 4 Esc101, Recursion

1. if start > end, return 0;
2. if a[start] == key, return 1;
3. return search(a, start+1, end, key);

Estimating the Time taken

Search1
 What about line 3?
 Remember the assumption: Let T(n)

denote the time taken by search on an
array of size n.

 Line 3 is searching in n-1 sized array
=> takes T(n-1) units

 But what about the value of T(n) ?

Sep-15 5 Esc101, Recursion

1. if start > end, return 0;
2. if a[start] == key, return 1;
3. return search(a, start+1, end, key);

Estimating the Time taken

Search1
 But what about the value of T(n) ?
 Looking at the body of search, and the

information we gathered on previous
slides, we can come up with a
recurrence relation:

 We need to solve the recurrence to get
the estimate of time

Sep-15 6 Esc101, Recursion

1. if start > end, return 0;
2. if a[start] == key, return 1;
3. return search(a, start+1, end, key);

T(n) = 1 + 1 + T(n-1)T(n) = 2 + 3 + T(n-1)T(n) = T(n-1) + C

Estimating the Time taken
Search1
 Solution to the recurrence?

 The worst case run time of Search1 is
proportional to the size of array
 Bigger the array, slower the search

 What is the best case run time?
 Which one is more important to

consider?
Sep-15 7 Esc101, Recursion

1. if start > end, return 0;
2. if a[start] == key, return 1;
3. return search(a, start+1, end, key);

T(n) = T(n-1) + C , T(0) = C
T(n) = Cn

Estimating the Time taken
Search2
 Recurrence?

 Solution?

 The worst case run time of Search2 is
also proportional to the size of array
 Can we do better?

Sep-15 8 Esc101, Recursion

if start > end, return 0;
mid = (start + end)/2 ;
if a[mid]==key, return 1;
return search(a, start, mid-1, key)

|| search(a, mid+1, end, key);

Yes, provided the elements in the array
are sorted
 in either ascending or descending order

Let us take an example. We have an array of
numbers, sorted in non-descending order.

some numbers can be repeated, like 4 in duckie[]
int duckie [] = {1,2,4,4,5,6,7};

To illustrate the idea, consider searching
for the number 6 in the array.

Can we search Faster?

Sep-15 Esc101, Recursion 9

2 4 4 5 71 8

Keep two indices, left and right.
Initially left is 0 and right is the rightmost
index in the array. Here right is 6.

duckie rightleft

0 6

Initialization

The key that is being searched for lies in
between the indices left and right in the
array duckie[] (both ends included), if at all
it is in the array.

Invariant

key

6

searching
for key 6

Sep-15 Esc101, Recursion 10

2 4 4 5 61 7

Calculate the middle
index of left and right

duckie rightleft
0 6

Procedure

The key lies between
the indices left and
right in the array
duckie[], if at all it is
in the array.

Invariant

key
6

mid =(left + right)/2

Compare duckie[mid] with key.
There are 3 possible outcomes.

mid

duckie[mid] == key
Key is found.
return mid.

Key may lie between
duckie[mid+1] and
duckie[right].

Key may lie between
duckie[left] and
duckie[mid-1].

duckie[mid] == key duckie[mid] < key
duckie[mid] > key

Sep-15 Esc101, Recursion 11

2 4 4 5 61 7

Calculate the middle
index of left and right

duckie rightleft
0 6

key
6

mid =(left + right)/2

Compare duckie[mid] with key.
There are 3 possible outcomes.

mid

duckie[mid] == key
Key is found.
return mid.

Key may lie between
duckie[left] and
duckie[mid-1].

Key may lie between
duckie[mid+1] and
duckie[right].

duckie[mid] == key duckie[mid] < key
duckie[mid] > key

Let us trace the
procedure on the
duckie array

Sep-15 Esc101, Recursion 12

2 4 4 5 61 7

duckie rightleft
0 6

key
6

mid = (0 + 6)/2

Compare duckie[3] with key.

mid

Calculate mid:

mid is 3

3

Sep-15 Esc101, Recursion 13

2 4 4 5 61 7

duckie rightleft
0 6

key
6

mid

1.compare duckie[mid] with key.

2.duckie[mid] is 4,key is 6.

3.4 < 6 so key may only lie among
duckie[mid+1] to duckie[right]

3

What to do now?
Sep-15 Esc101, Recursion 14

2 4 4 5 61 7

duckie rightleft
0 6

key
6

mid

1.We know for sure that key does
not lie in the index range 0..mid.

2.So we can set left to mid+1.

3.Continue the loop…

3

Sep-15 Esc101, Recursion 15

2 4 4 5 61 7

duckie rightleft
4 6

key
6

mid
5

1.Continuing…

2.mid = (left+right)/2. So mid is 5.

3.Now duckie[5] is 6, so we have
found the key.

Sep-15 Esc101, Recursion 16

2 4 4 5 61 7

duckie rightleft
4 6

key
6

mid
5

1.We have found the key, so we can
return the index 5.

2.Let us complete the flow of
procedure.

Sep-15 Esc101, Recursion 17

Calculate the middle
index of left and right

mid =(left + right)/2

Compare duckie[mid] with key.
There are 3 possible outcomes.

(duckie[mid] ==
key) is TRUE.
Key is found.
return mid. STOP

Key may lie between
duckie[0] and
duckie[mid-1].

Key may lie between
duckie[mid+1] and
duckie[right].

duckie[mid] == keyduckie[mid] > key duckie[mid] < key

right = mid-1; left = mid+1;

left=0; right = n-1

Something is still missing…
Sep-15 Esc101, Recursion 18

2 4 4 5 61 7

duckie rightleft
0 6

key
9

mid

Let us search for 9 in this array.

Key is 9
Initial values: left is 0,

mid is undefined,
right is 6.

Sep-15 Esc101, Recursion 19

2 4 4 5 61 7

duckie rightleft
0 6

key
9

mid

searching for 9.

Set mid to mid = (left+right)/2.
mid is 3. Compare duckie[mid] with key.
duckie[mid] is 4, key is 9 and 4<9.

3

So we have to move right, meaning
left is set to mid+1.
So left will be 4.

Sep-15 Esc101, Recursion 20

2 4 4 5 61 7

duckie rightleft
4 6

key
9

mid
search for 9

Set mid to (left+right)/2. So mid is (4+6)/2
equals 5.
Compare duckie[mid] with key.
duckie[mid] is 6, key is 9 and 6<9.

5

So, we have to move right again.
Set left to mid +1, so left becomes 6.

Sep-15 Esc101, Recursion 21

2 4 4 5 61 7

duckie rightleft
6 6

key
9

mid
search for 9

Set mid to mid = (left+right)/2.
So mid is (6+6)/2 equals 6.
Compare duckie[mid] with key. duckie[mid] is 7,
key is 9 and 7<9.

6

So, we have to move right again.
Set left to mid +1, so left becomes 7.

We continue…

Sep-15 Esc101, Recursion 22

2 4 4 5 61 7

duckie rightleft
7 6

key
9

mid
search for 9

6

We continue…

By invariant, item is
there between
duckie[left] and duckie
[right] so long as
left <= right.

left is 7, right is 6.
The two ends have crossed over.
So the item is not there in the
array!

OK, so another condition when the loop
terminates is left > right. Is there any other
termination condition? Can we search for 3?

NOT FOUND!

Sep-15 Esc101, Recursion 23

2 4 4 5 61 7

duckie rightleft
0 6

key
3

mid

Searching for 3 in this array.

1. left is 0, right is 6.
2. mid is (0+6)/2 which is 3.
3. duckie[mid] is 4, key is 3, so we have to move

left.
4. right will be set to mid-1.

Sep-15 Esc101, Recursion 24

2 4 4 5 61 7

duckie rightleft
0 2

key
3 1

mid

Searching for 3 in this array.

1. left is 0, right is 2.
2. mid is (0+2)/2 which is 1.
3. duckie[mid] is 2 , key is 3, so we have to

move right.
4. left will be set to mid+1.

Sep-15 Esc101, Recursion 25

2 4 4 5 61 7

duckie rightleft
2 2

key
3 2

mid

Searching for 3 in this array.

1. left is mid+1 which is 2, right is 2.
2. Now mid is (2+2)/2 which is 2.
3. duckie[mid] is 4 , key is 3, so we have to

move left.
4. right will be set to mid-1,So right will be 1.

Sep-15 Esc101, Recursion 26

2 4 4 5 61 7

duckie rightleft
2 1

key
3 1

mid

Searching for 3 in this array.

1.left is 2, right is 1.
2.Left and right have crossed over,

NOT FOUND!

Sep-15 Esc101, Recursion 27

Binary Search for Sorted Arrays
binsearch(a, start, end, key)
 Search key between a[start]…a[end], where a

is a sorted (non-decreasing) array
if start > end, return 0;
mid = (start + end)/2 ;
if a[mid]==key, return 1;
if (a[mid] > key)

return binsearch(a, start, mid-1, key);
else return binsearch(a, mid+1, end, key);

Sep-15 28 Esc101, Recursion

Wait, isn’t this same as search2?
Lets look closely

Sep-15 29 Esc101, Recursion

int binsearch(a, start, end, key) {
if start > end, return 0;
mid = (start + end)/2 ;
if a[mid]==key, return 1;
if (a[mid] > key)

return binsearch(a, start, mid-1,
key);

else return binsearch(a, mid+1, end, key);
}

int search2(a, start, end, key) {
if start > end, return 0;
mid = (start + end)/2 ;
if a[mid]==key, return 1;
return search2(a, start, mid-1, key)

|| search2(a, mid+1, end, key);
}

In worst case,
Both search2 may fire.
But, only ONE of the two
binsearch will fire.

Sep-15 Esc101, Recursion 30

How does it matter? It matters for
the time taken!

Estimating the Time taken

binsearch
 Recurrence?

 Solution?

 The worst case run time of binsearch is
proportional to the log of the size of array
Much faster than Search/Search1/Search2 for

large arrays
 Remember: It works for SORTED arrays only

Sep-15 31 Esc101, Recursion

T(n) = T(n/2) + C

if start > end, return 0;
mid = (start + end)/2 ;
if a[mid]==key, return 1;
if (a[mid] > key)

return binsearch(a, start, mid-1, key);
else return binsearch(a, mid+1, end, key);

Some problems related to binary search

Given a key, find its successor (predecessor) in
the array. That is, find the smallest (largest)
value larger (smaller) than the given key that
occurs in the array.

Given a sorted array, find the left-most
(right-most) occurrence of a key.

1. Find an occurrence of the key and then sequentially go
left (for predecessor) or go right (for successor).

2. Why?
3. because this may have linear complexity. Solve the

problem as efficiently as binary search, that is, number
of comparisons is bounded by constant times log(n).

4. Also the given key may not exist in the array.

You are not allowed to:

Recursion vs Iteration
int fib(int n)
{

int first = 0, second = 1;
int next, c;
if (n <= 1)

return n;
for (c = 1; c < n ; c++) {

next = first + second;
first = second;
second = next;

}
return next;

}

int fib(int n)
{

if (n <= 1)
return n;

else
return fib(n-1) + fib(n-2);

}

Sep-15 Esc101, Recursion 33

The recursive program is
closer to the definition

and easier to read.

But very very
inefficient

	Searching in an Array
	Searching in an Array
	Estimating the Time taken
	Estimating the Time taken
	Estimating the Time taken
	Estimating the Time taken
	Estimating the Time taken
	Estimating the Time taken
	Can we search Faster?
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Binary Search for Sorted Arrays
	Wait, isn’t this same as search2?
	Slide Number 30
	Estimating the Time taken
	Slide Number 32
	Recursion vs Iteration

