ESCI101: Introduction to
Computing

Sep-15 Esc101, MDArrays

Why Multidimensional Arrays?

®Marks of 800 students in b subjects
each.

#®Distance between cities
® Sudoku
® All the above require 2D arrays

®Properties of points in space
(Temperature, Pressure etc.)

#® Mathematical Plots
#> 2D arrays

Sep-15 Esc101, MDArrays

Multidimensional Arrays

Multidimensional arrays are defined like this:

double mat[5][6]; | OR|int mat[5][6]; |OR|float mat[5][6]; |etc.
The definition states that mat is a 5 X 6 matrix of
doubles (or ints or floats). It has 5 rows, each row has
6 columns, each entry is of type double.
2.1 1.0 -0.11 -0.87 31.5 11.4
-3.2 -2.5 | 1.678 4.5 0.001 | 1.89
mat 7.889 | 3.333 | 0.667 1.1 1.0 -1.0
-456 | -215 1.0e7 | -1.0e-9 |1.0e-15| -5.78
45.7 26.9 | -0.001 | 1000.09 | 1.0el15 1.0

Sep-15

Escl0l,-MDArray

Accessing matrix elements-I

1. The (i,j) th member of mat is accessed as mat[i][j]. Note
the slight difference from the matrix notation in maths.

2. The row and column numbering each start at O (not 1).
3. The following program prints the input matrix.

void print_matrix(double mat[5][6]) {
int i,j.
for (i=0: i < 5; i=i+1){ /* prints the ith row i = 0..4. */
A D |
I (.J-O,“;j ‘ 6 - j’+,1) { /* In each row, prints each of
printf("%f “, mat{i](j]): the six columns j=0..5 */

}

printf("\n”); /* prints a newline after each row */

g; 15 Escl101, MDArrays 4

Accessing matrix elements-II

1. Code for reading the matrix from the terminal.
2. The address of the i,j th matrix element is &mat[i][j].

3. This works without parentheses since the array indexing
operator [] has higher precedence than &.

void read_matrix(double mat[5][6]) {
int i,j.
for (i=0; i < 5; i=i+1) { |/* read the ith row i = 0..4. */

for (j=0: j < 6. j = j+1){ /* In each row, read each
scanf("%f “, &mat[i][j]); of the six columns j=0..5 */

} [scanf with %f option will skip over whitespace.

} So it really doesn't matter whether the entire input
} is given in 5 rows of 6 doubles in a row or all 30
doubles in a single line, etc..

Sep-15 Esc101, MDArrays 5

Initializing 2 dimensional arrays

We want a[4][3]
to be this
4 X 3 int matrix.

1 2 3

ON b

= 0 Ol

N O O

Initialize
as

int a[][3] =
{1,2,3)},
{4,5,6),
{7,8,9},
{0,1,2}
}.

Initialization rules:

1.Most important: values are given row-wise, first
row, then second row, so on.
2.Number of columns must be specified.

3.Values in each row are enclosed in braces {...}.
4 Number of values in a row may be less than the
number of columns specified. Remaining col values
set to O (or 0.0 for double, '\O' for char, etc.)

int a[][3] = { {1}, {2,3}, {3.4.5} }.

Sep-15

gives 1 0
ﬂ‘liS. 2 3
matrix 3 4

o110 O

for a:

Accessing matrix elements

void read_matrix(double mat[5][6]) {
int i,j.
for (i=

0;i<5; izi+1) { |/* read the ith row i = 0..4. */

for (j=0: j < 6. j = j+1){ /* In each row, read each
scanf("%f ”, &mat[i][j]): of the six columns j=0..5 */

}

}

9 4

¢

Sep-15

Could I change the formal
parameter to mat[6][5]? Would it
mean the same? Or mat[10][3]?

That would not be correct. It
would change the way elements
of mat are addressed. We will
dISCLlSS this in details later.

MDA [rays

You have an n x n grid with a certain
number of coins in each cell of the
grid. The grid cells are indexed by
(i,j) where0 <i,j<n-1.

For example, here is a 3x3 grid of coins:

0 1 2
0 5 &€ 8 € 2@
1 3 & 6 € o€
2 10 € 15 € 2

Sep-15 Esc101, MDArrays

Coin Collection: problem Statement i q

» You have to go from cell (0, 0) to ===
(n-1, n-1). .

* Whenever you pass through a cell, you
collect all the coins in that cell.

* You can only move right or down from
your current cell.

Goal: Collect the maximum number of coins.

Sep-15 Esc101, MDArrays 9

Consider the example grid

S 8 2
3 6 9
10 15 2

There are many ways to go from (0,0) to (n-1,n-1)

5 8 2 5 8 2 5 8 2

3 6 9 3 6 9 3 6 9

10 15 2 10 15 2 10 15 2
Total = 35 Total = 25 Total = 31

5 8 2 5 8 2 5 8 2

3 6 9 3 6 9 3 6 9

10 15 2 10 15 2 10 15 2
Total = 30 Total = 23 Total = 36

Max = 36

Sep-15 Esc101, MDArrays

10

Building a Solution

#®We cannot afford to check every possible
path and find the maximum.

1/,

Inan nXxn
grid, how many
such paths are
possible?

®Instead we will iteratively try to build a
solution.

Sep-15 Esc101, MDArrays

11

Solution Idea

#Consider a portion of L
some matrix

® What is the maximum number of coins that
I can collect when I reach the blue cell?
s This number depends only on the maximum

number of coins that I can collect when I reach
the two green cells!

s Why? Because I can only come to the blue cell
via one of the two green cells.

Sep-15 Esc101, MDArrays 12

Solution Idea (dynamic pr'ogramming)
L

Max-coins (bluecell) =
max(Max-coins (greencell-1),
Max-coins (greencell-2))
+ No. of coins (bluecell))

Sep-15 Esc101, MDArrays

13

Solution Idea EE

®Let a(i,j) be the number of coins in
cell(i,j)

®Let coin(i,j) be the maximum number of
coins collected when travelling from

(0,0) to (i,j).
#®Then,

coin(i,j) = max(coin(i,j-1), coin(i-1,j)) + a(i,j))

Sep-15 Esc101, MDArrays 14

Implementation

#®Use an additional two dimensional array,
whose (i,j)-th cell will store the maximum
number of coins collected when travelling
from (0,0) to (i,j).

@ Fill this array one row at a time, from
left to right.

#®When the array is completely filled,
return the (n-1, n-1)-th element.

Sep-15 Esc101, MDArrays 15

Implementation: Boundary Cases

@ To fill a cell of this array, we need to
know the information of the cell above
and to the left of the cell.

#®What about elements in the top most row

and
n Ce
n Ce

eft most column?
| in fop row: no cell above
| in leftmost column: no cell on left

#®Before starting with the other elements,
we will fill these first.

Sep-15

Esc101, MDArrays

16

int coin_collect(int a[][100], int n){
int 1,jJ, coins[100][100];

coins[O0][0] = a[0][0]; /Z//initial cell

for (1=1; i1<n; 1++) //first row
coins[O][1] = coins[O][1-1] + a[O][1];

for (1=1; 1<n; 1++) //first column
coins[1][0] = coins[1-1][0] + a[1][O];

for (1=1; i<n; 1++) //filling up the rest of the array
for (J=1; j<n; j++)
coins[i][jJ] = max(coins[i1-1][}j], coins[i1][}j-1]D
+ alillil:;

return coins[n-1][n-1]; //value of last cell

}

Sep-15 Esc101, MDArrays

-/

int max(int a, Int b){
1T (a>b) return a;
else return b;

}

int main(){
int m[100][100]},1,},Nn;

scanf("'%d', &n);
for (1=0; 1I<n; I1++)
for (J=0; jJ<n; jJ++)
scanf("'%d", &mfi]llil);

printf(""%d\n"", coin_collect(m,n));
return O;

}

Sep-15 Esc101, MDArrays

18

	ESC101: Introduction to Computing
	Why Multidimensional Arrays?
	Multidimensional Arrays
	Accessing matrix elements-I
	Accessing matrix elements-II
	Slide Number 6
	Accessing matrix elements
	Coin Collection: Practice Problem
	Coin Collection: Problem Statement
	Slide Number 10
	Building a Solution
	Solution Idea
	Solution Idea (dynamic programming)
	Solution Idea
	Implementation
	Implementation: Boundary Cases
	Slide Number 17
	Slide Number 18

