
ESC101: Introduction to
Computing

Sep-15 1Esc101, MDArrays

Why Multidimensional Arrays?
Marks of 800 students in 5 subjects
each.
Distance between cities
Sudoku
All the above require 2D arrays
Properties of points in space
(Temperature, Pressure etc.)
Mathematical Plots
> 2D arrays

Sep-15 2 Esc101, MDArrays

The definition states that mat is a 5 X 6 matrix of
doubles (or ints or floats). It has 5 rows, each row has
6 columns, each entry is of type double.

2.1 1.0 -0.11 -0.87 31.5 11.4

-3.2 -2.5 1.678 4.5 0.001 1.89

7.889 3.333 0.667 1.1 1.0 -1.0

-4.56 -21.5 1.0e7 -1.0e-9 1.0e-15 -5.78

45.7 26.9 -0.001 1000.09 1.0e15 1.0

mat

Multidimensional arrays are defined like this:

double mat[5][6]; OR int mat[5][6]; OR float mat[5][6]; etc.

Multidimensional Arrays

Sep-15 Esc101, MDArrays 3

1. The (i,j) th member of mat is accessed as mat[i][j]. Note
the slight difference from the matrix notation in maths.

2. The row and column numbering each start at 0 (not 1).
3. The following program prints the input matrix.

void print_matrix(double mat[5][6]) {
int i,j;
for (i=0; i < 5; i=i+1) {
for (j=0; j < 6; j = j+1) {

printf(“%f ”, mat[i][j]);
}
printf(“\n”);

}
}

/* prints the ith row i = 0..4. */

/* prints a newline after each row */

/* In each row, prints each of
the six columns j=0..5 */

Accessing matrix elements-I

Sep-15 Esc101, MDArrays 4

1. Code for reading the matrix from the terminal.
2. The address of the i,j th matrix element is &mat[i][j].
3. This works without parentheses since the array indexing

operator [] has higher precedence than &.

void read_matrix(double mat[5][6]) {
int i,j;
for (i=0; i < 5; i=i+1) {

for (j=0; j < 6; j = j+1) {
scanf(“%f ”, &mat[i][j]);

}
}

}

/* read the ith row i = 0..4. */

scanf with %f option will skip over whitespace.
So it really doesn’t matter whether the entire input
is given in 5 rows of 6 doubles in a row or all 30
doubles in a single line, etc..

Accessing matrix elements-II

/* In each row, read each
of the six columns j=0..5 */

Sep-15 Esc101, MDArrays 5

Initialize
as

1 2 3
4 5 6
7 8 9
0 1 2

int a[][3] = {
{1,2,3},
{4,5,6},
{7,8,9},
{0,1,2}

};
Initialization rules:
1.Most important: values are given row-wise, first
row, then second row, so on.
2.Number of columns must be specified.
3.Values in each row are enclosed in braces {…}.
4.Number of values in a row may be less than the
number of columns specified. Remaining col values
set to 0 (or 0.0 for double, ‘\0’ for char, etc.)

We want a[4][3]
to be this
4 X 3 int matrix.

int a[][3] = { {1}, {2,3}, {3,4,5} };
1 0 0
2 3 0
3 4 5

gives
this

matrix
for a:

Initializing 2 dimensional arrays

Sep-15 6

Accessing matrix elements
void read_matrix(double mat[5][6]) {

int i,j;
for (i=0; i < 5; i=i+1) {

for (j=0; j < 6; j = j+1) {
scanf(“%f ”, &mat[i][j]);

}
}

}

/* read the ith row i = 0..4. */

/* In each row, read each
of the six columns j=0..5 */

Could I change the formal
parameter to mat[6][5]? Would it
mean the same? Or mat[10][3]?

That would not be correct. It
would change the way elements
of mat are addressed. We will
discuss this in details later.

Sep-15 Esc101, MDArrays 7

Coin Collection: Practice Problem

Sep-15 8 Esc101, MDArrays

0 1 2
0 5 8 2
1 3 6 9
2 10 15 2

For example, here is a 3x3 grid of coins:

Coin Collection: Problem Statement

Sep-15 9 Esc101, MDArrays

• You have to go from cell (0, 0) to
(n-1, n-1).

• Whenever you pass through a cell, you
collect all the coins in that cell.

• You can only move right or down from
your current cell.

Goal: Collect the maximum number of coins.

Sep-15 10 Esc101, MDArrays

5 8 2
3 6 9
10 15 2

Consider the example grid

5 8 2
3 6 9
10 15 2

5 8 2
3 6 9
10 15 2

5 8 2
3 6 9
10 15 2

5 8 2
3 6 9
10 15 2

5 8 2
3 6 9
10 15 2

5 8 2
3 6 9
10 15 2

There are many ways to go from (0,0) to (n-1,n-1)

Total = 35

Total = 30 Total = 23

Total = 25 Total = 31

Total = 36

Max = 36

Building a Solution
We cannot afford to check every possible
path and find the maximum.
 Why?

Instead we will iteratively try to build a
solution.

Sep-15 11 Esc101, MDArrays

Solution Idea
Consider a portion of
some matrix
What is the maximum number of coins that
I can collect when I reach the blue cell?
 This number depends only on the maximum

number of coins that I can collect when I reach
the two green cells!

 Why? Because I can only come to the blue cell
via one of the two green cells.

Sep-15 12 Esc101, MDArrays

Solution Idea (dynamic programming)

Max-coins (bluecell) =
max(Max-coins (greencell-1),

Max-coins (greencell-2))
+ No. of coins (bluecell))

Sep-15 13 Esc101, MDArrays

Solution Idea

Let a(i,j) be the number of coins in
cell(i,j)
Let coin(i,j) be the maximum number of
coins collected when travelling from
(0,0) to (i,j).
Then,
coin(i,j) = max(coin(i,j-1), coin(i-1,j)) + a(i,j))

Sep-15 14 Esc101, MDArrays

Implementation
Use an additional two dimensional array,
whose (i,j)-th cell will store the maximum
number of coins collected when travelling
from (0,0) to (i,j).
Fill this array one row at a time, from
left to right.
When the array is completely filled,
return the (n-1, n-1)-th element.

Sep-15 15 Esc101, MDArrays

Implementation: Boundary Cases
To fill a cell of this array, we need to
know the information of the cell above
and to the left of the cell.
What about elements in the top most row
and left most column?
 Cell in top row: no cell above
 Cell in leftmost column: no cell on left
Before starting with the other elements,
we will fill these first.

Sep-15 16 Esc101, MDArrays

Sep-15 17 Esc101, MDArrays

int coin_collect(int a[][100], int n){
int i,j, coins[100][100];

coins[0][0] = a[0][0]; //initial cell

for (i=1; i<n; i++) //first row
coins[0][i] = coins[0][i-1] + a[0][i];

for (i=1; i<n; i++) //first column
coins[i][0] = coins[i-1][0] + a[i][0];

for (i=1; i<n; i++) //filling up the rest of the array
for (j=1; j<n; j++)

coins[i][j] = max(coins[i-1][j], coins[i][j-1])
+ a[i][j];

return coins[n-1][n-1]; //value of last cell
}

Sep-15 18 Esc101, MDArrays

int max(int a, int b){
if (a>b) return a;
else return b;

}

int main(){
int m[100][100],i,j,n;

scanf("%d", &n);
for (i=0; i<n; i++)
for (j=0; j<n; j++)
scanf("%d", &m[i][j]);

printf("%d\n", coin_collect(m,n));
return 0;

}

	ESC101: Introduction to Computing
	Why Multidimensional Arrays?
	Multidimensional Arrays
	Accessing matrix elements-I
	Accessing matrix elements-II
	Slide Number 6
	Accessing matrix elements
	Coin Collection: Practice Problem
	Coin Collection: Problem Statement
	Slide Number 10
	Building a Solution
	Solution Idea
	Solution Idea (dynamic programming)
	Solution Idea
	Implementation
	Implementation: Boundary Cases
	Slide Number 17
	Slide Number 18

