
Recursion vs Iteration
int fib(int n)
{

int first = 0, second = 1;
int next, c;
if (n <= 1)

return n;
for (c = 1; c < n ; c++) {

next = first + second;
first = second;
second = next;

}
return next;

}

int fib(int n)
{

if (n <= 1)
return n;

else
return fib(n-1) + fib(n-2);

}

Oct-15 Esc101, Recursion 1

The recursive program is
closer to the definition

and easier to read.

But very very
inefficient

fib(5)

fib(4) + fib(3)

fib(3) + fib(2) + fib(2) + fib(1)

fib(2) + fib(1) + fib(1) + fib(0) + fib(1) + fib(0)

fib(1) + fib(0)
Oct-15 Esc101, Recursion 2

Recursive fib

Rec. fib: How fast #calls grow
num fib(num) Count

5 5 15
10 55 177
15 610 1973
20 6765 21891
25 75025 242785
30 832040 2692537

Oct-15 3 Esc101, Recursion

#include<stdio.h>
int count = 0; /*Global: #fib calls */

int fib(int n) {
count = count+1;
if (n<=1) return n;
else return fib(n-1) + fib(n-2);

}

int main() {
int num, res;
for (num=5; num<=30; num=num+5) {
count = 0; /* reset the count*/
res = fib(num);
printf("%d, %d\n", res, count);

}
return 0;

}

Recursion: Summary
Advantages
 Elegant. Solution is cleaner.
 Fewer variables.
 Once the recursive definition is figured out,

program is easy to implement.
Disadvantages
 Debugging can be considerably more difficult.
 Figuring out the logic of the recursive function

is not easy sometimes.
 Can be inefficient (requires more time and

space), if not implemented carefully.
Oct-15 7 Esc101, Recursion

Around Easter 1961, a course on ALGOL 60 was
offered … It was there that I first learned about
recursive procedures and saw how to program the
sorting method which I had earlier found such
difficulty in explaining. It was there that I wrote
the procedure, immodestly named QUICKSORT, on
which my career as a computer scientist is founded.
Due credit must be paid to the genius of the
designers of ALGOL 60 who included recursion in
their language and enabled me to describe my
invention so elegantly to the world. I have regarded
it as the highest goal of programming language design
to enable good ideas to be elegantly expressed.

 The Emperor’s Old Clothes, C. A. R. Hoare, ACM
Turing Award Lecture, 1980

Oct-15 Esc101, Recursion 8

Recursion : Tower of Hanoi

A B C

Oct-15 Esc101, Recursion 9

Image Source:
http://www.comscigate.com/cs/IntroSedgewick/20elements/27recursion/index.html

No disk
may be
placed
on top
of a
smaller
disk.

Recursion : Tower of Hanoi ..2

Oct-15 Esc101, Recursion 10

A B C

Image Source:
http://www.comscigate.com/cs/IntroSedgewick/20elements/27recursion/index.html

No disk
may be
placed
on top
of a
smaller
disk.

Recursion : Tower of Hanoi ..3

Oct-15 Esc101, Recursion 11

A B C

Image Source:
http://www.comscigate.com/cs/IntroSedgewick/20elements/27recursion/index.html

No disk
may be
placed
on top
of a
smaller
disk.

Recursion : Tower of Hanoi ..4

Oct-15 Esc101, Recursion 12

A B C

Image Source:
http://www.comscigate.com/cs/IntroSedgewick/20elements/27recursion/index.html

No disk
may be
placed
on top
of a
smaller
disk.

Oct-15 Esc101, Recursion 13

// move n disks From A to C using B as auxx
void hanoi(int n, char A, char C, char B) {
if (n==0) { return; } // nothing to move!!
// recursively move n-1 disks
// from A to B using C as auxx
hanoi(n-1, A, B, C);
// atomic move of a single disk
printf(“Move 1 disk from %c to %c\n”, A, C);
// recursively move n-1 disks
// from B to C using A as auxx
hanoi(n-1, B, C, A);

}

Oct-15 Esc101, Recursion 14

Move 1 disk from A to B
Move 1 disk from A to C
Move 1 disk from B to C
Move 1 disk from A to B
Move 1 disk from C to A
Move 1 disk from C to B
Move 1 disk from A to B
Move 1 disk from A to C
Move 1 disk from B to C
Move 1 disk from B to A
Move 1 disk from C to A
Move 1 disk from B to C
Move 1 disk from A to B
Move 1 disk from A to C
Move 1 disk from B to C

OUTPUT for hanoi(4, ‘A’, ‘C’, ‘B’)

Image Source:
http://upload.wikimedia.org/wikipedia/commons
/6/60/Tower_of_Hanoi_4.gif

Oct-15 Esc101, Recursion 15

The puzzle was invented by the French mathematician Édouard
Lucas in 1883.

There is a story about a temple in Kashi Vishwanath, which
contains a large room with three posts surrounded by 64 golden
disks. Brahmin priests have been moving these disks, in accordance
with the immutable rules of the Brahma. The puzzle is therefore also
known as the Tower of Brahma puzzle.

According to the legend, when the last move of the puzzle
will be completed, the world will end.

If the legend were true, and if the priests were able to move
disks at a rate of one per second, using the smallest number of
moves, it would take them 264−1 seconds or roughly
585 billion years or about 127 times the current age of the
sun.

Source:
https://en.wikipedia.org/wiki/Tower_of_Hanoi

ESC101: Introduction to
Computing

Oct-15 16Esc101, Pointers

Pointers

Pointer: Dictionary Definition

Oct-15 17 Esc101, Pointers

Pointer we are all born with

Oct-15 18 Esc101, Pointers

Oct-15 Esc101, Pointers 19

Simplified View of Memory
‘A’
‘E’
‘I’

‘O’
‘U’

1024

1004001

1004000

1004001

1004002

1004003

1004004

1004005

1004006

1004007

1004008

1004009

1004010

1004011

1004012
1004013
1004014
1004015

• “Array” of blocks
• Each block can hold a byte

(8-bits)
• “char” stored in 1 block
• “int” (32-bit) stored in 4

consecutive blocks
• Finite number of blocks

• Limited by the capacity of
(Virtual) Memory

• Blocks are addressable –
[0…2N-1]

Oct-15 Esc101, Pointers 20

Simplified View of Memory
‘A’
‘E’
‘I’

‘O’
‘U’

1024

1004001

1004000

1004001

1004002

1004003

1004004

1004005

1004006

1004007

1004008

1004009

1004010

1004011

1004012
1004013
1004014
1004015

• Blocks are addressable.
• Address range: [0…2N-1]
• N is the number of bits in

address (number of digits in
binary world)

• Any integer in the above
range
• Can be used as an index in

the MEMORY ARRAY
• Since memory array is unique,

we can use this index alone
• If context is clear

Oct-15 Esc101, Pointers 21

Simplified View of Memory
‘A’
‘E’
‘I’

‘O’
‘U’

1024

1004001

1004000

1004001

1004002

1004003

1004004

1004005

1004006

1004007

1004008

1004009

1004010

1004011

1004012
1004013
1004014
1004015

• Content of the 4-blocks starting
at address 1004012
1004001

• Without knowing the context it is
not possible to determine the
significance of number 1004001
It could be an integer value

1004001
It could be the “location” of

the block that stores ‘E’

How do we decide what
it is?

Oct-15 Esc101, Pointers 22

“Type” helps us
disambiguate.

What is a Pointer
Pointer: A special type of variable that
contains an address of a memory location.
Think of a pointer as a new data type (a new
kind of box) that holds memory addresses.
Pointers are almost always associated with
the type of data that is contained in the
memory location.
 For example, an integer pointer is a memory

location that contains an integer.
 Character pointer, float pointer
 Even pointer to pointer (more on this later …)

Oct-15 Esc101, Pointers 23

OK.
Let me take you on a
journey of Pointers in

SEA Owlie

Banti

SEA C

The memory allocated to array has
two components:

int num[10];

num num[1]num[0] num[2] num[9]
This definition for num[10] gives 11 boxes, 10 of
type int, and 1 of type address of an int box.

1. We represent the address of a box x by an arrow to
the box x. So addresses are referred to as pointers.

2. The contents of an address box is a pointer to the box
whose address it contains. e.g., num points to num[0] above.

A consecutively allocated segment of
memory boxes of the same type, and

A box with the same name as the array. This
box holds the address of the base (i.e., first)
element of the array.

What can we do
with a box? e.g.,
an integer box?

For integers, we can do + -
* / % etc. for each of
num[0] through num[9].

int num[10];

ptr = &num[1];

But what is the type
of ptr? And how do i
define ptr?

int * ptr;
ptr= &num[1];

ptr would be of type
address of int. In C
this type is int *.

That’s simple. We can
do operations that are
supported for the
data type of the box.

OK. Say i want to take
the address of num[1]
and store it in an
address variable ptr.

True!. But we can also
take the address of a
box.We do this when
we use scanf for
reading using the &
operator.

int num[10];
int * ptr;
ptr = &num[1];

To see the meaning of
ptr =&num[1], let’s look
at the memory state.

num

num[1]num[0] num[2] num[9]

Here is the state after
int num[10] gets defined.

The statement creates a new box of
type “address of an int box”, more commonly
referred to as, of type “pointer to integer”.

int *ptr;
ptr

The statement assigns to ptr
the address of the box num[1]. Commonly
referred to as: ptr now points to num[1].

ptr = &num[1];

OK, ptr is of type
pointer to integer.
But what does

mean?
ptr = &num[1];

num
num[1]

num
[0] num[2] num[9]

ptr

Suppose I now add the following
statement after above fragment

scanf(“%d”,ptr);
and input is : 5

Input

Does num[1] become 5?

OK, i see. The program fragment
below results in this memory
state.

1. Yes! scanf(“%d”,ptr)
reads input integer into
the box pointed to by
the corresponding
argument.

2. The box pointed to by
ptr is num[1].

3. So num[1] becomes 5.

5

int num[10];
int * ptr;
ptr = &num[1];

	Recursion vs Iteration
	Recursive fib
	Rec. fib: How fast #calls grow
	Recursion: Summary
	Slide Number 8
	Recursion : Tower of Hanoi
	Recursion : Tower of Hanoi ..2
	Recursion : Tower of Hanoi ..3
	Recursion : Tower of Hanoi ..4
	Slide Number 13
	Slide Number 14
	Slide Number 15
	ESC101: Introduction to Computing
	Pointer: Dictionary Definition
	Pointer we are all born with
	Slide Number 19
	Simplified View of Memory
	Simplified View of Memory
	Simplified View of Memory
	What is a Pointer
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28

