
num
num[1]

num
[0] num[2] num[9]

ptr

Suppose I now add the following
statement after above fragment

scanf(“%d”,ptr);
and input is : 5

Input

Does num[1] become 5?

OK, i see. The program fragment
below results in this memory
state.

1. Yes! scanf(“%d”,ptr)
reads input integer into
the box pointed to by
the corresponding
argument.

2. The box pointed to by
ptr is num[1].

3. So num[1] becomes 5.

5

int num[10];
int * ptr;
ptr = &num[1];

Well, what
else can
you do
with ptr?

num
num[1]

num
[0] num[2] num[9]

ptr 5

num is of type int [] (i.e., array
of int). In C the box num
stores the pointer to num[0].
Internally, C represents num
and ptr in the same way. So
the type int * can be used
wherever int[] was used.

Here are the interesting parts! You can
1. de-reference the pointer.
2. do simple arithmetic + - with pointers.
3. compare pointers and test for ==, <, >

etc., similar to ordinary integers.

What’s so
interesting?
Please give
examples.

num
num[1]

num
[0] num[2] num[9]

ptr 5

num[3] num[4]
10

De-referencing a pointer ptr gives
the box pointed to by ptr. The de-
referencing operator in C is also *.

printf(“%d”, *ptr);

Since ptr points to num[1], *ptr is the box
num[1]. Printing it gives the output 5.

5Output

This will add 5 to the value in box pointed by
ptr. So num[1] will become 5+5 = 10

*ptr = *ptr + 5;Consider statement

num
num[1]

num
[0] num[2] num[9]

ptr 10

num[3] num[4]

7 -1 611

*ptr = *ptr + 5;
num[2] = num[1]+num[2];

1. 1st statement will add 5 to the value in box
pointed by ptr. So *ptr becomes 10 + 5 = 15.

2. But *ptr and num[1] are the same box. So 2nd

statement assigns 15 + 7 equals 22 to num[2].

Consider the statements.
Execute them on above
memory state.

De-referencing a pointer ptr gives the
box pointed to by ptr. The de-
referencing operator in C is *.

Recall rule about pointers:

15 22

num[0] num[1] num[2] num[9]

1 15 22

num[2]= *num + *ptr;

Consider the
statement

Is it a legal
statement?
What would be
the result?

1. num can be thought to be
of type int *, and, ptr is
of type int *.

2. So *num is of type int,
which is 1 and *ptr is of
type int with value 15

3. So num[2] is set to 16.

Hmm…
seems
legal—
‘cause

num

ptr

16

Okay,
What’s
cool?

num

num[1]num[0] num[2]

22

num[3] num[4]

161 -1 23

printf(“%d %d %d”, *(num+1),
(num+2),(num+3));

Can you tell me the output
of this printf statement?

Hmm…
Output
would

be
22 16 -1

So num+1 points to num[1]. Similarly, num+2 points
to num[2], num + 3 points to num[3], and so on.

num+1 points to integer box just next to the
integer box pointed to by num. Since arrays were
consecutively allocated, the integer box just next to
num[0] is num[1].

Let me show you some cool stuff: pointer arithmetic.

int num[] = {1,22,16,-1,23};Let

owlieLet us predict the output of
some simple code fragments.

char str[] =“BANTI is a nice girl”;
char *ptr = str + 6; /*initialize*/
printf(“%s”,ptr);
What is printed by the above program?

First let us draw the state of memory.

ptr points to str[6]. printf prints
the string starting from str[6], which is

is a nice girl

str[0] str[5] str[10]

‘ ’‘e’

str[15]

‘B’ ‘A’ ‘N’ ‘T’ ‘I’ ‘s’‘i’

str
ptr

‘n’ ‘i’‘a’ ‘ ’ ‘c’ ‘ ’

‘g’ ‘i’ ‘r’ ‘l’ ‘\0’

str[20]str[16]

Output

printf(“%s”,ptr-5);

char str[] = “BANTI is a nice girl”;
char *ptr; ptr = str + 6;

OK. Let me understand.The char
array str[] was initialized as below.

str + 5

‘B’ ‘A’ ‘N’ ‘T’ ‘I’

‘n’‘s’‘i’ ‘a’ ‘ ’‘ ’

‘ ’

‘i’‘c’‘i’ ‘ ’ ‘g’‘e’

‘l’‘r’ --‘\0’ -- --

str

ptr

char *. So str + 6
points to the 6th

character from the
character pointed to
by str. That is ptr.
Correct?

expressions
with pointers

str + 10

str + 23

str + 18

equals ptr +4

Here are some other
pointer expressions-are
they correct?

Yes, they’re all
correct. Can you tell
me the output of:

str is of type

Yes,
that’s
correct

char str[] = “BANTI is a nice girl”;
char *ptr; ptr = str + 6;
printf(“%s”,ptr-5);

‘B’ ‘A’ ‘N’ ‘T’ ‘I’

‘n’‘s’‘i’ ‘a’ ‘ ’‘ ’

‘ ’

‘i’‘c’‘i’ ‘ ’ ‘g’‘e’

‘l’‘r’ --‘\0’ -- --

str

ptr

ptr -5 should point to the 5th char
backwards from the char pointed
to by ptr. So ptr-5 points here

The string starting from this point
is “ANTI is a nice girl”. That would
be the output. Correct?

ANTI is a nice girlOutput

Yes,
that’s
correct

Pointers play an important role when
used as parameters in function calls.

Let’s start with the old example.

void swap(int a, int b) {
int t;
t = a; a=b; b =t;
printf(“From swap”);
printf(“a = %d”,a);
printf(“b= %d\n”,b);

}

int main() {
int a = 1, b = 2;
swap(a,b);
printf(“From main”);
printf(“a = %d”,a);
printf(“b=%d\n”,b);

}

But, if you remember, the
value of a and b do not
change in main(), although
they are swapped in swap().

OK, let’s first
trace the call to swap

The swap(int a, int b) function is
intended to swap (exchange) the
values of a and b.

t

void swap(int a, int b) {
int t;
t = a; a=b; b =t;
printf(“From swap ”);
printf(“a= %d”,a);
printf(“b= %d\n”,b);

}

int main() {
int a = 1, b = 2;
swap(a,b);
printf(“From main”);
printf(“ a = %d”,a);
printf(“b = %d”,b);

}

2

1a

b
main()

swap()return
address main.3

b

a 1

2

2

1

1

Output: From swap a= 2 b= 1

Now swap() returns:
1. Return address is

line 3 of main().
Program counter is
set to this
location.

2. Stack for swap() is
deleted.

void swap(int a, int b) {
int t;
t = a; a=b; b =t;
printf(“From swap ”);
printf(“a = %d”,a);
printf(“b = %d\n”,b);

}

int main() {
int a = 1, b = 2;
swap(a,b);
printf(“From main”);
printf(“ a = %d”,a);
printf(“b = %d”,b);

}

2

1a

b
main()

Output: From swap a = 2 b = 1

Changes made by swap() remained local to
the variables of swap(). They did not
propagate back to main().

Returning back to main(),we
resume execution from line 3.

But the variables a and b of main() are
unchanged from what they were before
the call to swap(). They are printed as is.

void swap(int a, int b) {
int t;
t = a; a=b; b =t;
printf(“From swap ”);
printf(“a = %d”,a);
printf(“b = %d\n”,b);

}

int main() {
int a = 1, b = 2;
swap(a,b);
printf(“From main”);
printf(“ a = %d”,a);
printf(“b = %d”,b);

}

2

1a

b

Output: From swap a = 2 b = 1

1. Passing int/float/char as
parameters does not allow
passing “back” to calling
function.

2. Any changes made to these
variables are lost once the
function returns.

From main a = 1 b = 2

Pointers will help us solve this problem!

Here is the changed program.

void
swap(int *ptra, int *ptrb)
{

int t;
t = *ptra;
*ptra= *ptrb;
*ptrb =t;

}

int main() {
int a = 1, b = 2;
swap(&a, &b);
printf(“a=%d, b=%d”,

a, b);
return 0;

}

1. The function swap() uses pointer to integer
arguments, int *ptra and int *ptrb.

2. The main() function calls swap(&a,&b), i.e.,
passes the addresses of the ints it wishes to
swap.

0x1024

Tracing the swap function
int main() {

int a = 1, b = 2;
swap(&a, &b);

}

1 2a b

0x2000
&a &b

Address of a. (a is
situated at memory
location 0x1024)

&b&a

ptrb
ptra

0x1024

1 2
a b

0x2000

void swap(int *ptra, int *ptrb) {
int t;
t = *ptra;
*ptra= *ptrb;
*ptrb =t;

}

main
swap

0x1024 0x2000

t

12 1
2

2

Homework

void swap(int *ptra, int *ptrb) {
int *ptrt;
ptrt = ptra;
ptra= ptrb;
ptrb =ptrt;

}

Will the following code perform swap correctly?

&b&a

ptrb
ptra

0x1024

1 2
a b

0x2000

0x1024 0x2000

t

Simplified View of Memory: Recap
‘A’
‘E’
‘I’

‘O’
‘U’

1024

1004001

1004000

1004001

1004002

1004003

1004004

1004005

1004006

1004007

1004008

1004009

1004010

1004011

1004012
1004013
1004014
1004015

• Content of the 4-blocks starting
at address 1004012
1004001

• Without knowing the context it is
not possible to determine the
significance of number 1004001
It could be an integer value

1004001
It could be the “location” of

the block that stores ‘E’

How do we decide what
it is?

Oct-15 Esc101, Pointers 18

“Type” helps us
disambiguate.

Simplified View of Memory
‘A’
‘E’
‘I’

‘O’
‘U’

1024

1004001

1004000

1004001

1004002

1004003

1004004

1004005

1004006

1004007

1004008

1004009

1004010

1004011

1004012
1004013
1004014
1004015

• In programming also, “Type” helps us
decide whether 1004001 is an integer
or a pointer to block containing ‘E’ (or
something else)

#include<stdio.h>
int main() {

char x[5] = {‘A', ‘E', ‘I', ‘O', ‘U'};
int y = 1024;
char *p = x+1;
…

}
#include<stdio.h>
int main() {

char x[5] = {‘A', ‘E', ‘I', ‘O', ‘U'};
int y = 1024;
int p = 1004001;
…

}

x

y

p

Oct-15 Esc101, Pointers 21

Declaration
of a
pointer to
char box

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Tracing the swap function
	Slide Number 16
	Homework
	Simplified View of Memory: Recap
	Simplified View of Memory

