OK, i see. The program fragment
below results in this memory

U int num[10];

int * ptr;
ptr = &num[1];

numl || num
1[0] num[1] num[2] ___num[9]

1

T 151
r' .
P)

. Yes! scanf("%d",ptr)
reads input integer into
the box pointed to by
the corresponding
argument.

. The box pointed to by
ptr is num[1].

. So num[1] becomes 5.

— =2 O\M‘pﬂ/\/

Suppose I now add the following
statement after above fragment

scanf("7%d",ptr); | | Input

and input is : 5

Does num[1] become 5?

numl || num
1[0] num[1] num[2] ___ num[9]

2L

num is of type int [] (i.e., array
of int). In C the box num
stores the pointer to num[O].
Internally, C represents num
and ptr in the same way. So
the type int * can be used
wherever int[] was used.

Well, what
else can
you do

with ptr?

Here are the interesting parts! You can
1. de-reference the pointer.

2. do simple arithmetic + - with pointers.

3. compare pointers and test for ==,
etc., similar to ordinary integers.

<

'

>

‘What'’s so
interesting?
Please give
examples.

numl || num 10

;l, [0] num[l]ynum[Z] num[3] num[4] num[9]
IR E E R | (I
pir . S

De-referencing a pointer ptr gives
the box pointed to by ptr. The de-
referencing operator in C is also *.

printf("%d", *ptr); Output || 5

Since ptr points to num[1], *ptr is the box
num[1]. Printing it gives the output 5.

Consider statement *ptr = *ptr + 5;

This will add 5 to the value in box pointed by
ptr. So num[1] will become 5+5 = 10

Y)

22

J

{ 15
numl || num
;1,[0] num[l_]\

1110

ptr| |

f)

7 -1161

N\ N\ —— - —

1

Recall rule about pointers:

De-referencing a pointer ptr gives the
box pointed to by ptr. The de-
referencing operator in C is *.

Consider the statements.
Execute them on above

*ptr = *ptr + 5;
num[2] = num[1]+num[2].

memory state.

1. 1s* statement will add

statement assigns 15

5 to the value in box

pointed by ptr. So *ptr becomes 10 + 5 = 15,
2. But *ptr and num[1] are the same box. So 2"

+ 7 equals 22 to num[2].

\num[Z]//num[B] num[4] num[9]

num num[O0] num[1] num[2] = num[9]
I 1 ‘ 15 22 Hmm...
A de = - seems
16 legal—
Consider the _ ‘cause
ptr s'rcrl":nr?;']\: o ——— 1. num can be thought to be
‘ of type int *, and, ptr is
Is it a legal of type int *.
statement? 2. So *num is of type int,
What would be which is 1 and *ptr is of
the result? type int with value 15
3. So num[2] is set to 16.

Or0O

Let me show you some cool stuff: pointer arithmetic.

Let | int num[] = {1,22,16,-1,23};
I num[O]lnum[1] num[2] num[3] num[4]

W+ |) 10| o)]

num+1 points to integer box just next to the Okavy,
integer box pointed to by num. Since arrays were What's
consecutively allocated, the integer box just next to| cool?

num[0] is num[1].

So num+1 points to num[1]. Similarly, num+2 points
to num[2], num + 3 points to num[3], and so on.

Can you tell me the output gmuid‘;mut

f this printf statement? ©

of this pri ateme 1) !

printf("%d %d %d”, *(num+1), e be
(num+2),(num+3)); 22 16 -1

Let us predict the output of owlie
some simple code fragments.

char str[] ="BANTT is a nice girl”;
char *ptr = str + 6; /*initialize*/
printf("%s",ptr);

What is printed by the above program?

First let us draw the state of memory.

str[0] str[5] str[10]
‘B'| A" 'N'| 'T'| 'T U I~ I ' U A I« O Y o
tr[16] str[20]

ptr points to str[6]. printf prints

the string starting from str[6], which is @\“’N
T gv

Output |is a nice girl

OK. Let me understand.The char
array str[] was initialized as below.

str is of type

char *. So str + 6
points to the 6
character from the
character pointed to
by str. That is ptr.

Here are some other
pointer expressions-are

str + 5 |char str[] = "BANTI is a nice girl”; <
| char *ptr; ptr = str + 6;
v
st 5 |Bl IAI ‘N lTl |Il ' e Str. + 10
| equals ptr +4
.il Qsl 0o lal L lnl
ptr > str + 18 —
.il ch] ’ L . 0 Vo) Cor.r.ect?
str + 231
r| I"|"\Q'--|-- |-- {| expressions
i with pointers || They correct?
Yes, Yes, they're all

that's |correct. Can you tell
correct | me the output of:

printf("%s",ptr-5);

char str[] = "BANTT is a nice girl”;
char *ptr; ptr = str + 6;

printf("%s",ptr-5);

— ¢ 1] ptr -5 should point to the 5™ char
stits Bl Al 'N| 'T| T1* | | backwards from the char pointed
to by ptr. So ptr-5 points here —
U3 Y Y A ()
ptr — The string starting from this point
Pl ele'| | g it |is "ANTT is a nice girl”. That would
be the output. Correct?
NG === |-~ Output | ANTT is a nice girl
Yes,
that's

correct

oro Pointers play an important role when _
~ used as parameters in function calls. gk‘;‘”
T Let's start with the old example. Vel
int main() { void swap(int a, int b) {
intfa=1, b =2; int +;
swap(a,b): t = a; a=b; b =t;
printf("From main”); printf("From swap”):
printf("a = %d”,a); printf("a = %d",a);
printf("b=%d\n",b); printf("b= %d\n”,b):
} }

The swap(int a, int b) function is
infended to swap (exchange) the
values of a and b.

But, if you remember, the
value of a and b do not
change in main(), although OK, let's first

they are swapped in swap(). || trace the call to swap

int main() {
inta=1, b =

swap(a,b):

ADVIS

printf("From main”);
printf(" a = %d",a);
printf("b = %d",b):

}

2;

a 1

)

bl 2
main()

Output:

return

address Tl

-
o[1]

swap()

From swap a= 2 b=1

Now swap() returns:
1. Return address is
line 3 of main().

Program counter is
set to this
location.

2. Stack for swap() is
deleted.

int main() { void swap(int a, int b) {
infa=1, b =2; int +;
swap(a,b): t = a; a=b; b =t;
printf("From main”); printf("From swap “);
printf(" a = %d",a): printf("a = %d",a);
printf("b = %d",b); printf("b = %d\n",b):
} }
o al 1 Output: [From swapa =2 b = 1
S
R bl 2 Returning back to main(),we
mair\l()—/ resume execution from line 3.

But the variables a and b of main() are
unchanged from what they were before
the call to swap(). They are printed as is.

Changes made by swap() remained local to
the variables of swap(). They did not
propagate back to main().

int main() { void swap(int a, int b) {
inta=1,b =2; int t;
swap(a,b): t = a; a=b; b =%;
printf("From main”); printf("From swap “);
printf(" a = %d",a); printf("a = %d",a);
printf("b = %d”,b): printf("b = %d\n",b):
}
1 Output: |From swapa =2b =1
) From maina=1b =2
z 1. Passing int/float/char as

parameters does not allow
passing “back” to calling
function.

2. Any changes made to these
variables are lost once the
function returns.

Pointers will help us solve this problem!

Here is the changed program.

int main() {
inta=1, b = 2;
swap(&a, &b):;
printf("a=%d, b=%d",
a, b):
return O;

1. The function swap() uses pointer to integer
arguments, int *ptra and int *ptrb.

2. The main() function calls swap(&a,&b), i.e.,
passes the addresses of the ints it wishes to
swap.

Tracing the swap function

int main() {

infa=1,b =2; A
ﬁ}swap(&a, &b):
}

&a

Address of a. (a is | 0x1024 : ' 0x2000 !
situated at memory R L v
location 0x1024)

R, W -
; i
i !

| 0x1024 | | 0x2000

|
N - 3 \ - ’

&a

2

x1024 } {OxZOOO
ptrb

ptr

|

Homework ©

Will the following code perform swap correctly?

iz 1 WAEL
A i \
4 T IR

% ave x Memory: Reca
exoP , 1004000 A

APW "drT'ng 1004001 ‘£’

4012 1004002 g

1004003 ‘0’

! g the context it is 1004004 U

deter

wmbe vype” helps us
ininte disambiguate.

A | - nw 1004009

v'It could be the "location” of 1004010 | o
the block that stores 'E’ 1004011
1004012

How do we decide what 10040131 1004001
|t IS? 1004014
1004015

Oct-15 Esc101, Pointers

Simplified View of Memory

« In programming also, "Type" helps us
decide whether 1004001 is an integer
or a pointer to block containing 'E' (or
something else)

#Hinclude<stdio.h>

int main() {
char x[5] = {‘A", ‘E', ‘I', ‘O, ‘U'};
= 024;
+
#include<stdio.h>
v Intmain() {
Declaration char x[5] = {'A", ‘E', ‘I', ‘O’, ‘U'};
of a inty = 1024;
pointer to int p = 1004001;
char box

J5
Oct-15 Esc101, Pointers

1004000
1004001
1004002
1004003
1004004
1004005
1004006
1004007
1004008
1004009
1004010
1004011

1004012
1004013
1004014
1004015

‘A’

‘U’

1024

1004001

21

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Tracing the swap function
	Slide Number 16
	Homework 
	Simplified View of Memory: Recap
	Simplified View of Memory

