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Source: http://www.xkcd.com/138



Example Function that Returns Pointer
char *strdup(const char *s);

strdup creates a copy of the string (char 
array) passed as arguments
 copy is created in dynamically allocated 

memory block of sufficient size
returns a pointer to the copy created
C does not allow returning an Array of 
any type from a function
 But we can use a pointer to simulate return 

of an array (or multiple values of same type)
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Returning Pointer: Beware
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#include<stdio.h>
int *fun();
int main() {
printf("%d",*fun());

}

int *fun() {
int *p, i;
p = &i;
i = 10;
return p;

}

#include<stdio.h>
int *fun();
int main() {
printf("%d",*fun());

}

int *fun() {
int *p;
p = (int*)malloc(sizeof(int));
*p = 10;
return p;

}
OUTPUT

OUTPUT:   10



Returning Pointer: Beware
The function stack (except for the 
return value) is gone once the function 
completes its execution.
 All addresses of local variables and formal 

arguments become invalid 
 available for “reuse” 
But the heap memory, once allocated,  
remains until it is explicitly “freed”
 even beyond the function that allocated it.
addresses of static and global variables 
remain valid throughout the program.
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An Intuition
 Think of executing a function as writing on a 

classroom blackboard. 
 Once the function finishes execution (the class is 

over), everything on the blackboard is erased.
 What if we want to retain a message, after class 

is over?
 Solution could be to post essential information on 

a “notice board”, which is globally accessible to all 
classrooms.

 The blackboard of a class is like the stack 
(possibly erased/overwritten in the next class), 
and the notice board is like the heap.



Class Quiz
The following program illustrates the difference 
between int *ptr[2] and int (*ptr)[2] .
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#include<stdio.h>
int main() {  

int a[] = {1,2,3};  
int (*ptr)[2] = &a;    

printf("%d\n", (*ptr)[0]);  
printf("%d\n", (*ptr)[1]);  

(*ptr)[0] = -1;  
printf("%d\n", a[0]); 
return 0;

}

An equivalent 
assignment is:
int (*ptr)[2];
ptr = &a;

OUTPUT:
1
2
-1



Source: http://www.xkcd.com/371
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Common Issues and Errors



Common Issues and Errors
 Forgetting to malloc, forgetting to 

initialize allocated memory
 Not allocating enough space in malloc (e.g. 

Allocating 4 characters instead of 5 to 
store the string “IITK”.)

 Returning pointers to temporaries (called 
dangling pointers)

 Forgetting to free memory after use 
(called a memory leak.)

 Freeing the same memory more than once
(runtime error), using free-d memory
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Memory Leaks
Consider code:

Memory is allocated to a at line 2.
However, at line 3, a is reassigned NULL
No way to refer to allocated memory!!
 We can not even free it, as free-ing requires 

passing address of allocated block
This memory is practically lost for the 
program (Leaked)
 Ideally, memory should be freed before 

losing last reference to it
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1. int *a;
2. a = (int *)malloc(5*sizeof(int));
3. a = NULL;



Multi-dimensional Array vs. 
Multi-level pointer

Are these two equivalent?

 Both a and b can hold 6 integer in a 2x3 grid 
like structure.

 In case of a all 6 cells are consecutively 
allocated. For b, we have 2 blocks of 3 
consecutive cells each.
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int a[2][3]; int **b;
b = (int**)malloc(2*sizeof(int*));
b[0] = (int*)malloc(3*sizeof(int));
b[1] = (int*)malloc(3*sizeof(int));



Memory layout
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int a[2][3]; int **b;
b = (int**)malloc(2*sizeof(int*));
b[0] = (int*)malloc(3*sizeof(int));
b[1] = (int*)malloc(3*sizeof(int));

a

b[0]

b
b[1]

Warning: 
 (*b+3)  may not point to b[1][0].
 (*a+3) points to a[1][0].

Logical Layout



Indexing Elements 
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1 4 9

3
0

2
0

4
0b[1]

b[0]

b

How to refer to an element
of the array in the language
of pointers?
• b[0][1] is *(*b+1)
• b[1][0] is **(b+1)
• b[1][2] is *(*(b+1)+2)
In general, b[i][j] is *(*(b+i)+j)

b[1]

b[0]

b

b[1][0] b[1][2]

b[0][1]

Expression        Value
**(b+1)
*(*b+1)             
(**b+1)
*(*b+2)+2
*(*(b+1)+2)+2

20
4
2
11
42



Pointers vs. Arrays: Indexing
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int a[3][3], i, j, *b, *c;

for (i=0; i<3; i++)
for (j=0; j<3; j++)

a[i][j] = pow((i+3),(j+1));

b = *a;
c = *(a+2);
for (i=0; i<3; i++)

printf("%d ", b[i]);
printf("\n");

for (i=0; i<3; i++)
printf("%d ", *(c+i));

3 9 27
4 16 64
5 25 125

At this point,   
array a is:

What do b and c
point-to here?
b is a pointer to
a[0][0]?
c is a pointer to 
a[2][0]?

OUTPUT
3 9 27
5 25 125
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int a[3][3], i, j, *b, *c;

for (i=0; i<3; i++)
for (j=0; j<3; j++)

a[i][j] = pow((i+3),(j+1));

b = *a;
c = *(a+2) + 1;
for (i=0; i<3; i++)

printf("%d ", b[i]);
printf("\n");

for (i=0; i<2; i++)
printf("%d ", *(c+i));

3 9 27
4 16 64
5 25 125

At this point,   
array a is:

What do b and c
point-to here?
b is a pointer to
a[0][0]?
c is a pointer to 
a[2][1]?

OUTPUT
3 9 27
25 125

note
the
change



int arr[2][3];
(number of rows fixed, 
number of columns fixed)

int (*arr)[3];

(only the number of columns fixed)

.

.

.

int* arr[3];

(only the number of rows fixed)

int **arr; (general case)

Array of arrays

Array of Pointers vs. Pointer to an Array



int (*arr)[3];

(only the number of columns fixed)
.
.
.

int* arr[3];

(only the number of rows fixed)

Array of arrays

Variants of malloc – Advanced Types

arr = (int (*)[3]) malloc(n*3*sizeof(int));
or

arr = (int (*)[3]) malloc(n*sizeof(int[3]));

arr = (int *[3]) malloc(n*sizeof(int[3]));

Only when you want to use n columns in each row.



18

int **a, *b[2], (*c)[3], d[2][3];

//c = d;  /* Fine, matches the column size */
//c = b;  /* Warning: incompatible pointer type; different sizes! */

printf("sizeof(a) = %3d, sizeof(*a) = %3d, sizeof(**a) = %3d\n",
sizeof(a), sizeof(*a), sizeof(**a) ); 

printf("sizeof(b) = %3d, sizeof(*b) = %3d, sizeof(**b) = %3d\n",
sizeof(b), sizeof(*b), sizeof(**b) );

printf("sizeof(c) = %3d, sizeof(*c) = %3d, sizeof(**c) = %3d\n",
sizeof(c), sizeof(*c), sizeof(**c) );

printf("sizeof(d) = %3d, sizeof(*d) = %3d, sizeof(**d) = %3d\n",
sizeof(d), sizeof(*d), sizeof(**d) );

sizeof(a) =   8, sizeof(*a) =   8, sizeof(**a) =   4

sizeof(b) =  16, sizeof(*b) =   8, sizeof(**b) =   4

sizeof(c) =   8, sizeof(*c) =  12, sizeof(**c) =   4

sizeof(d) =  24, sizeof(*d) =  12, sizeof(**d) =   4
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