
Returning Pointers

Oct-15 1 Esc101, Pointers 

Source: http://www.xkcd.com/138



Example Function that Returns Pointer
char *strdup(const char *s);

strdup creates a copy of the string (char 
array) passed as arguments
 copy is created in dynamically allocated 

memory block of sufficient size
returns a pointer to the copy created
C does not allow returning an Array of 
any type from a function
 But we can use a pointer to simulate return 

of an array (or multiple values of same type)
Oct-15 2 Esc101, Pointers 



Returning Pointer: Beware

Oct-15 3 Esc101, Pointers 

#include<stdio.h>
int *fun();
int main() {
printf("%d",*fun());

}

int *fun() {
int *p, i;
p = &i;
i = 10;
return p;

}

#include<stdio.h>
int *fun();
int main() {
printf("%d",*fun());

}

int *fun() {
int *p;
p = (int*)malloc(sizeof(int));
*p = 10;
return p;

}
OUTPUT

OUTPUT:   10



Returning Pointer: Beware
The function stack (except for the 
return value) is gone once the function 
completes its execution.
 All addresses of local variables and formal 

arguments become invalid 
 available for “reuse” 
But the heap memory, once allocated,  
remains until it is explicitly “freed”
 even beyond the function that allocated it.
addresses of static and global variables 
remain valid throughout the program.

Oct-15 4 Esc101, Pointers 



An Intuition
 Think of executing a function as writing on a 

classroom blackboard. 
 Once the function finishes execution (the class is 

over), everything on the blackboard is erased.
 What if we want to retain a message, after class 

is over?
 Solution could be to post essential information on 

a “notice board”, which is globally accessible to all 
classrooms.

 The blackboard of a class is like the stack 
(possibly erased/overwritten in the next class), 
and the notice board is like the heap.



Class Quiz
The following program illustrates the difference 
between int *ptr[2] and int (*ptr)[2] .

Oct-15 6 Esc101, Pointers 

#include<stdio.h>
int main() {  

int a[] = {1,2,3};  
int (*ptr)[2] = &a;    

printf("%d\n", (*ptr)[0]);  
printf("%d\n", (*ptr)[1]);  

(*ptr)[0] = -1;  
printf("%d\n", a[0]); 
return 0;

}

An equivalent 
assignment is:
int (*ptr)[2];
ptr = &a;

OUTPUT:
1
2
-1



Source: http://www.xkcd.com/371

Oct-15 Esc101, Pointers 7 

Common Issues and Errors



Common Issues and Errors
 Forgetting to malloc, forgetting to 

initialize allocated memory
 Not allocating enough space in malloc (e.g. 

Allocating 4 characters instead of 5 to 
store the string “IITK”.)

 Returning pointers to temporaries (called 
dangling pointers)

 Forgetting to free memory after use 
(called a memory leak.)

 Freeing the same memory more than once
(runtime error), using free-d memory

Oct-15 8 Esc101, Pointers 



Memory Leaks
Consider code:

Memory is allocated to a at line 2.
However, at line 3, a is reassigned NULL
No way to refer to allocated memory!!
 We can not even free it, as free-ing requires 

passing address of allocated block
This memory is practically lost for the 
program (Leaked)
 Ideally, memory should be freed before 

losing last reference to it
Oct-15 9 Esc101, Pointers 

1. int *a;
2. a = (int *)malloc(5*sizeof(int));
3. a = NULL;



Multi-dimensional Array vs. 
Multi-level pointer

Are these two equivalent?

 Both a and b can hold 6 integer in a 2x3 grid 
like structure.

 In case of a all 6 cells are consecutively 
allocated. For b, we have 2 blocks of 3 
consecutive cells each.

Oct-15 10 Esc101, Pointers 

int a[2][3]; int **b;
b = (int**)malloc(2*sizeof(int*));
b[0] = (int*)malloc(3*sizeof(int));
b[1] = (int*)malloc(3*sizeof(int));



Memory layout

Oct-15 11 Esc101, Pointers 

int a[2][3]; int **b;
b = (int**)malloc(2*sizeof(int*));
b[0] = (int*)malloc(3*sizeof(int));
b[1] = (int*)malloc(3*sizeof(int));

a

b[0]

b
b[1]

Warning: 
 (*b+3)  may not point to b[1][0].
 (*a+3) points to a[1][0].

Logical Layout



Indexing Elements 

Oct-15 12 Esc101, Pointers 

1 4 9

3
0

2
0

4
0b[1]

b[0]

b

How to refer to an element
of the array in the language
of pointers?
• b[0][1] is *(*b+1)
• b[1][0] is **(b+1)
• b[1][2] is *(*(b+1)+2)
In general, b[i][j] is *(*(b+i)+j)

b[1]

b[0]

b

b[1][0] b[1][2]

b[0][1]

Expression        Value
**(b+1)
*(*b+1)             
(**b+1)
*(*b+2)+2
*(*(b+1)+2)+2

20
4
2
11
42



Pointers vs. Arrays: Indexing

Oct-15 13 Esc101, Pointers 



Oct-15 14 Esc101, Pointers 

int a[3][3], i, j, *b, *c;

for (i=0; i<3; i++)
for (j=0; j<3; j++)

a[i][j] = pow((i+3),(j+1));

b = *a;
c = *(a+2);
for (i=0; i<3; i++)

printf("%d ", b[i]);
printf("\n");

for (i=0; i<3; i++)
printf("%d ", *(c+i));

3 9 27
4 16 64
5 25 125

At this point,   
array a is:

What do b and c
point-to here?
b is a pointer to
a[0][0]?
c is a pointer to 
a[2][0]?

OUTPUT
3 9 27
5 25 125



Oct-15 15 Esc101, Pointers 

int a[3][3], i, j, *b, *c;

for (i=0; i<3; i++)
for (j=0; j<3; j++)

a[i][j] = pow((i+3),(j+1));

b = *a;
c = *(a+2) + 1;
for (i=0; i<3; i++)

printf("%d ", b[i]);
printf("\n");

for (i=0; i<2; i++)
printf("%d ", *(c+i));

3 9 27
4 16 64
5 25 125

At this point,   
array a is:

What do b and c
point-to here?
b is a pointer to
a[0][0]?
c is a pointer to 
a[2][1]?

OUTPUT
3 9 27
25 125

note
the
change



int arr[2][3];
(number of rows fixed, 
number of columns fixed)

int (*arr)[3];

(only the number of columns fixed)

.

.

.

int* arr[3];

(only the number of rows fixed)

int **arr; (general case)

Array of arrays

Array of Pointers vs. Pointer to an Array



int (*arr)[3];

(only the number of columns fixed)
.
.
.

int* arr[3];

(only the number of rows fixed)

Array of arrays

Variants of malloc – Advanced Types

arr = (int (*)[3]) malloc(n*3*sizeof(int));
or

arr = (int (*)[3]) malloc(n*sizeof(int[3]));

arr = (int *[3]) malloc(n*sizeof(int[3]));

Only when you want to use n columns in each row.



18

int **a, *b[2], (*c)[3], d[2][3];

//c = d;  /* Fine, matches the column size */
//c = b;  /* Warning: incompatible pointer type; different sizes! */

printf("sizeof(a) = %3d, sizeof(*a) = %3d, sizeof(**a) = %3d\n",
sizeof(a), sizeof(*a), sizeof(**a) ); 

printf("sizeof(b) = %3d, sizeof(*b) = %3d, sizeof(**b) = %3d\n",
sizeof(b), sizeof(*b), sizeof(**b) );

printf("sizeof(c) = %3d, sizeof(*c) = %3d, sizeof(**c) = %3d\n",
sizeof(c), sizeof(*c), sizeof(**c) );

printf("sizeof(d) = %3d, sizeof(*d) = %3d, sizeof(**d) = %3d\n",
sizeof(d), sizeof(*d), sizeof(**d) );

sizeof(a) =   8, sizeof(*a) =   8, sizeof(**a) =   4

sizeof(b) =  16, sizeof(*b) =   8, sizeof(**b) =   4

sizeof(c) =   8, sizeof(*c) =  12, sizeof(**c) =   4

sizeof(d) =  24, sizeof(*d) =  12, sizeof(**d) =   4


	Returning Pointers
	Example Function that Returns Pointer
	Returning Pointer: Beware
	Returning Pointer: Beware
	An Intuition
	Class Quiz
	Common Issues and Errors
	Common Issues and Errors
	Memory Leaks
	Multi-dimensional Array vs. Multi-level pointer
	Memory layout
	Indexing Elements 
	Pointers vs. Arrays: Indexing
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18

