Returning Pointers

MAN, | SUCK AT THIS GAME.
CAN YOU GIVE ME.
A FEW POINTERST

[0x3A28213A
Ox6339292C,
Ox7363682E.

| HATE YOU. /

Source: http://www.xkcd.com/138

Oct-15 Esc101, Pointers

Example Function that Returns Pointer

char *strdup(const char *s):
®strdup creates a copy of the string (char
array) passed as arguments

m copy is created in dynamically allocated
memory block of sufficient size

#®returns a pointer to the copy created

@ C does not allow returning an Array of
any type from a function

s But we can use a pointer to simulate return
of an array (or multiple values of same type)

Oct-15 Esc101, Pointers

Returning Pointer: Beware

#include<stdio.h> #include<stdio.h>
int *fun(); int *fun();
int main() { int main() {
printf("%d",*fun()): printf("%d",*fun()):
} }
int *fun() { =¥ ~em int *fun() {
int *p, i; ' int *p;
p = &i; p = (int*)malloc(sizeof(int)):
i = 10; *p = 10;
return p. return p.
} }
OUTPUT: 10
OUTPUT

Oct-15 Esc101, Pointers

Returning Pointer: Beware

@ The function stack (except for the
return value) is gone once the function
completes its execution.

s All addresses of local variables and formal
arguments become invalid

= available for "reuse”

@ But the heap memory, once allocated,
remains until it is explicitly "freed”
s even beyond the function that allocated it.

®addresses of static and global variables
remain valid throughout the program.

Oct-15 Esc101, Pointers

An Intuition

m Think of executing a function as writing on a
classroom blackboard.

m Once the function finishes execution (the class is
over), everything on the blackboard is erased.

m What if we want to retain a message, after class
IS over?

m Solution could be to post essential information on
a "notice board", which is globally accessible to all
classrooms.

m The blackboard of a class is like the stack
(possibly erased/overwritten in the next class),
and the notice board is like the heap.

Class Quiz

@ The following program illustrates the difference
between int *ptr[2] and int (*ptr)[2] .

#include<stdio.h>

int main() { An equivalent
int a[] = {1,2,3}; assignment is:
int (*ptr)[2] = &a: int (*ptr)[2]).
ptr = &a:

printf("7%d\n", (*ptr)[O]):
printf("%d\n", (*ptr)[1]):

(*ptr)[0] = -1: OUTPUT:
printf("%d\n", a[O]): 1
return O; 2

} -1

Oct-15 Esc101, Pointers

Commohn Issues and Errors

OKAY HUMAN.

HUH? 3
BEFORE YOU
HIT (OMPILE,
“LISTEN up

YOU KNOW WHEN YOURE
FALLING ASLEER AND
YOU IMAGINE YOURSELF
WALKING OR
A SOMETHING,

|

Source: http://www.xkcd.com/371

Oct-15

AND SUCDENLY YCU
NISSTER, STUMBLE,
AND JOLT AWAKE?

YEAH! rﬁ

Bh

Esc101, Pointers

WELL, THAT'S WHAT A
SEGFAULT FEELS LIKE.

)
DOUBLE - CHECK. YOUR
DAMN POINTERS, OKAY?

%1

Commohn Issues and Errors

m Forgetting to malloc, forgetting to
initialize allocated memory

m Not allocating enough space in malloc (e.g.
Allocating 4 characters instead of 5 to
store the string "ITITK".)

m Returning pointers to temporaries (called
dangling pointers)

m Forgetting to free memory after use
(called a memory leak.)

m Freeing the same memory more than once
(runtime error), using free-d memory

Oct-15 Esc101, Pointers

Memory Leaks
#®Consider code: 1l int *a;

®Memory is al
#However, at

2. a = (int *)malloc(5*sizeof(int));
3. a = NULL;

ocated to a at line 2.
ine 3, a is reassigned NULL

#No way to refer to allocated memory!
s We can not even free it, as free-ing requires
passing address of allocated block
@ This memory is practically lost for the
program (Leaked)

» Ideally, memory should be freed before
losing last reference 1o it

Oct-15

Esc101, Pointers

Multi-dimensional Array vs.

Multi-level pointer
#® Are these two equivalent?

int a[2][3];

int **b;
b = (int**)malloc(2*sizeof (int™));

b[0] = (int*)malloc(3*sizeof(int));

b[1] = (int*)malloc(3*sizeof(int));

s Both aand b can hold 6 integer in a 2x3 grid
like structure.

s In case of a all 6 cells are consecutively
allocated. For b, we have 2 blocks of 3
consecutive cells each.

Oct-15

Esc101, Pointers

10

Memory layout

int a[2][3];

Warning:

int **b;
b = (int**)malloc(2*sizeof(int™)):

b[0] = (int*)malloc(3*sizeof(int));
b[1] = (int*)malloc(3*sizeof(int));

b[O]

I
b

b[1]

Logical Layout -

» (*b+3) may not point to b[1][O].
» (a+3) points to a[1][O].

Oct-15

Esc101, Pointers

11

Indexing Elements

How to refer to an element b[0]
of the array in the language — _|
of pointers?

. b[O]I[1] is *(*b+1) b
+ b[1][0] is **(b+1) o /-
* b[1][2] is *(*(b+1)+2)

b[O][1]

In general, b[i][j] is *(*(b+i)+j) b[11[0] b[1][2]
Al Expression Value
*(*b+1) 4
(**b+1) 2
o 2 3 4
b[1] 0 0 O *(*b+2)+2 11

((b+1)+2)+2 | 42

Oct-15 Esc101, Pointers 12

Pointers vs. Arrays: Indexing

®Matrix style notation A[i][j] is easier for
humans to read

® Computers understand pointer style
notation *(*(p + i) + j)
= More efficient in some cases

®Be extremely careful with brackets

i) =T+ ECpric])

Oct-15 Esc101, Pointers 13

int a[3](3], i, j, *b, *c: At this point,
array a is:

for (i=0; i<3; i++)
for (=0: J<3: §+) [6] o
alil(j] = pow((i+3),(j+1)).

5| 25125
b = *a: What do b and ¢
c = *(a+2); - |:>o/in_'|‘_:IQ_her'e?
for (i=0; i<3; i++) b is a pointer to
| prin:?f(':'%d ", b[i]): a[0][0]?
printf('\n"); c is a pointer to
a[2][0]?
for (i=0: i<3: i++) OUTPLET —
printf("%d ", *(c+i)): 3927

525 125

Oct-15 Esc101, Pointers 14

int a[3][3], i, j, *b, *c: At this point,

array a is:
for (i=0; i<3; i++) 3| 9| 27
for (j=0: j<3: j++) 4| 16| 64
alil(j] = pow((i+3),(j+1)): E\NCEE
b = *a: What do b and ¢
c = *(a+2) + 1; . point-to here?
for (i=0: i<3; iv+) b is a pointer to
| pru:ff(" %d ", b[i]): a[0][0]?
printf(*\n"); c is a pointer to
a[2][1]?
for (i=0; i<2Fi++) ~—ouTPUT
printf("%d ", *(c+i)): 3927 the
25 125 change

Oct-15 Esc101, Pointers

15

Array of Pointers vs. Pointer to an Array

int arr[2][3]; I
(number of rows fixed, T

number of columns fixed)

int (farr)[3]; L =_\—’---
(only the number of columns fixed) ---

s | |
-—l_' HIHEER Array of arrays
.__.ll int* arr[3];
_.—>IIIIIIIIIIII (only the number of rows fixed)

= *x -
Int =7 arr; (general case)

Variants of malloc - Advanced Types

int (arr)[3]; L =__’---
(only the number of columns fixed) ---
- LI

arr = (int (*)[3]) malloc(n*3*sizeof(int));
or
arr = (int (*)[3]) malloc(n*sizeof(int[3]));

-—l_' HIHEER Array of arrays
.__,II int* arr[3];

_.—>IIIIIIIIIIII (only the number of rows fixed)
arr = (int *[3]) malloc(n*sizeof(int[3]));

Only when you want to use n columns in each row.

int **a, *b[2], (*c)[3], d[2][3]:

//c = d; /* Fine, matches the column size */
//c = b; /* Warning: incompatible pointer type:; different sizes! */

printf("sizeof(a) = %3d, sizeof(*a) = %3d, sizeof(**a) = %3d\n",
sizeof(a), sizeof(*a), sizeof(**a));

sizeof(a) = 8, sizeof(**a) = 8, sizeof(**a) = 4

printf("sizeof(b) = %3d, sizeof(*b) = %3d, sizeof(**b) = %3d\n",
sizeof(b), sizeof(*b), sizeof(**b));
sizeof(b) = 16, sizeof(*b) = 8, sizeof(**b) = 4
printf(“sizeof(c) = %3d, sizeof(*c) = %3d, sizeof(**c) = %3d\n",
sizeof(c), sizeof(*c), sizeof(**c)).
sizeof(c) = 8, sizeof(*c) = 12, sizeof(**c) = 4

printf('sizeof(d) = %3d, sizeof(*d) = %3d, sizeof(**d) = %3d\n",
sizeof(d), sizeof(*d), sizeof(**d));
sizeof(d) = 24, sizeof(*d) = 12, sizeof(***d) = 4

¥8

	Returning Pointers
	Example Function that Returns Pointer
	Returning Pointer: Beware
	Returning Pointer: Beware
	An Intuition
	Class Quiz
	Common Issues and Errors
	Common Issues and Errors
	Memory Leaks
	Multi-dimensional Array vs. Multi-level pointer
	Memory layout
	Indexing Elements
	Pointers vs. Arrays: Indexing
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18

