
Returning Pointers

Oct-15 1 Esc101, Pointers

Source: http://www.xkcd.com/138

Example Function that Returns Pointer
char *strdup(const char *s);

strdup creates a copy of the string (char
array) passed as arguments
 copy is created in dynamically allocated

memory block of sufficient size
returns a pointer to the copy created
C does not allow returning an Array of
any type from a function
 But we can use a pointer to simulate return

of an array (or multiple values of same type)
Oct-15 2 Esc101, Pointers

Returning Pointer: Beware

Oct-15 3 Esc101, Pointers

#include<stdio.h>
int *fun();
int main() {
printf("%d",*fun());

}

int *fun() {
int *p, i;
p = &i;
i = 10;
return p;

}

#include<stdio.h>
int *fun();
int main() {
printf("%d",*fun());

}

int *fun() {
int *p;
p = (int*)malloc(sizeof(int));
*p = 10;
return p;

}
OUTPUT

OUTPUT: 10

Returning Pointer: Beware
The function stack (except for the
return value) is gone once the function
completes its execution.
 All addresses of local variables and formal

arguments become invalid
 available for “reuse”
But the heap memory, once allocated,
remains until it is explicitly “freed”
 even beyond the function that allocated it.
addresses of static and global variables
remain valid throughout the program.

Oct-15 4 Esc101, Pointers

An Intuition
 Think of executing a function as writing on a

classroom blackboard.
 Once the function finishes execution (the class is

over), everything on the blackboard is erased.
 What if we want to retain a message, after class

is over?
 Solution could be to post essential information on

a “notice board”, which is globally accessible to all
classrooms.

 The blackboard of a class is like the stack
(possibly erased/overwritten in the next class),
and the notice board is like the heap.

Class Quiz
The following program illustrates the difference
between int *ptr[2] and int (*ptr)[2] .

Oct-15 6 Esc101, Pointers

#include<stdio.h>
int main() {

int a[] = {1,2,3};
int (*ptr)[2] = &a;

printf("%d\n", (*ptr)[0]);
printf("%d\n", (*ptr)[1]);

(*ptr)[0] = -1;
printf("%d\n", a[0]);
return 0;

}

An equivalent
assignment is:
int (*ptr)[2];
ptr = &a;

OUTPUT:
1
2
-1

Source: http://www.xkcd.com/371

Oct-15 Esc101, Pointers 7

Common Issues and Errors

Common Issues and Errors
 Forgetting to malloc, forgetting to

initialize allocated memory
 Not allocating enough space in malloc (e.g.

Allocating 4 characters instead of 5 to
store the string “IITK”.)

 Returning pointers to temporaries (called
dangling pointers)

 Forgetting to free memory after use
(called a memory leak.)

 Freeing the same memory more than once
(runtime error), using free-d memory

Oct-15 8 Esc101, Pointers

Memory Leaks
Consider code:

Memory is allocated to a at line 2.
However, at line 3, a is reassigned NULL
No way to refer to allocated memory!!
 We can not even free it, as free-ing requires

passing address of allocated block
This memory is practically lost for the
program (Leaked)
 Ideally, memory should be freed before

losing last reference to it
Oct-15 9 Esc101, Pointers

1. int *a;
2. a = (int *)malloc(5*sizeof(int));
3. a = NULL;

Multi-dimensional Array vs.
Multi-level pointer

Are these two equivalent?

 Both a and b can hold 6 integer in a 2x3 grid
like structure.

 In case of a all 6 cells are consecutively
allocated. For b, we have 2 blocks of 3
consecutive cells each.

Oct-15 10 Esc101, Pointers

int a[2][3]; int **b;
b = (int**)malloc(2*sizeof(int*));
b[0] = (int*)malloc(3*sizeof(int));
b[1] = (int*)malloc(3*sizeof(int));

Memory layout

Oct-15 11 Esc101, Pointers

int a[2][3]; int **b;
b = (int**)malloc(2*sizeof(int*));
b[0] = (int*)malloc(3*sizeof(int));
b[1] = (int*)malloc(3*sizeof(int));

a

b[0]

b
b[1]

Warning:
 (*b+3) may not point to b[1][0].
 (*a+3) points to a[1][0].

Logical Layout

Indexing Elements

Oct-15 12 Esc101, Pointers

1 4 9

3
0

2
0

4
0b[1]

b[0]

b

How to refer to an element
of the array in the language
of pointers?
• b[0][1] is *(*b+1)
• b[1][0] is **(b+1)
• b[1][2] is *(*(b+1)+2)
In general, b[i][j] is *(*(b+i)+j)

b[1]

b[0]

b

b[1][0] b[1][2]

b[0][1]

Expression Value
**(b+1)
*(*b+1)
(**b+1)
*(*b+2)+2
((b+1)+2)+2

20
4
2
11
42

Pointers vs. Arrays: Indexing

Oct-15 13 Esc101, Pointers

Oct-15 14 Esc101, Pointers

int a[3][3], i, j, *b, *c;

for (i=0; i<3; i++)
for (j=0; j<3; j++)

a[i][j] = pow((i+3),(j+1));

b = *a;
c = *(a+2);
for (i=0; i<3; i++)

printf("%d ", b[i]);
printf("\n");

for (i=0; i<3; i++)
printf("%d ", *(c+i));

3 9 27
4 16 64
5 25 125

At this point,
array a is:

What do b and c
point-to here?
b is a pointer to
a[0][0]?
c is a pointer to
a[2][0]?

OUTPUT
3 9 27
5 25 125

Oct-15 15 Esc101, Pointers

int a[3][3], i, j, *b, *c;

for (i=0; i<3; i++)
for (j=0; j<3; j++)

a[i][j] = pow((i+3),(j+1));

b = *a;
c = *(a+2) + 1;
for (i=0; i<3; i++)

printf("%d ", b[i]);
printf("\n");

for (i=0; i<2; i++)
printf("%d ", *(c+i));

3 9 27
4 16 64
5 25 125

At this point,
array a is:

What do b and c
point-to here?
b is a pointer to
a[0][0]?
c is a pointer to
a[2][1]?

OUTPUT
3 9 27
25 125

note
the
change

int arr[2][3];
(number of rows fixed,
number of columns fixed)

int (*arr)[3];

(only the number of columns fixed)

.

.

.

int* arr[3];

(only the number of rows fixed)

int **arr; (general case)

Array of arrays

Array of Pointers vs. Pointer to an Array

int (*arr)[3];

(only the number of columns fixed)
.
.
.

int* arr[3];

(only the number of rows fixed)

Array of arrays

Variants of malloc – Advanced Types

arr = (int (*)[3]) malloc(n*3*sizeof(int));
or

arr = (int (*)[3]) malloc(n*sizeof(int[3]));

arr = (int *[3]) malloc(n*sizeof(int[3]));

Only when you want to use n columns in each row.

18

int **a, *b[2], (*c)[3], d[2][3];

//c = d; /* Fine, matches the column size */
//c = b; /* Warning: incompatible pointer type; different sizes! */

printf("sizeof(a) = %3d, sizeof(*a) = %3d, sizeof(**a) = %3d\n",
sizeof(a), sizeof(*a), sizeof(**a));

printf("sizeof(b) = %3d, sizeof(*b) = %3d, sizeof(**b) = %3d\n",
sizeof(b), sizeof(*b), sizeof(**b));

printf("sizeof(c) = %3d, sizeof(*c) = %3d, sizeof(**c) = %3d\n",
sizeof(c), sizeof(*c), sizeof(**c));

printf("sizeof(d) = %3d, sizeof(*d) = %3d, sizeof(**d) = %3d\n",
sizeof(d), sizeof(*d), sizeof(**d));

sizeof(a) = 8, sizeof(*a) = 8, sizeof(**a) = 4

sizeof(b) = 16, sizeof(*b) = 8, sizeof(**b) = 4

sizeof(c) = 8, sizeof(*c) = 12, sizeof(**c) = 4

sizeof(d) = 24, sizeof(*d) = 12, sizeof(**d) = 4

	Returning Pointers
	Example Function that Returns Pointer
	Returning Pointer: Beware
	Returning Pointer: Beware
	An Intuition
	Class Quiz
	Common Issues and Errors
	Common Issues and Errors
	Memory Leaks
	Multi-dimensional Array vs. Multi-level pointer
	Memory layout
	Indexing Elements
	Pointers vs. Arrays: Indexing
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18

