
ESC101: Introduction to
Computing

Recap & More

Esc101, Programming 1

Problem 1
The first line of the input consists of
two positive integers m and n.
This line is followed by m lines, each
containing n integers, signifying an
m X n matrix A. Calculate

∑i(∑jAij)2 , 1≤i<m , 1≤j<n .

Desired output
(4+7+11+2)2 + (1+1+2+4)2 +
(2+9+0+ (-1))2

3 4
4 7 11 2
1 1 2 4
2 9 0 -1

row
i

columns j
e.g. A20 = 2, A12 = 2 2Esc101, Programming

Double loops

Need something of a double loop
here (loop inside a loop).
One loop to do the row sum of each
row.
Once a row is finished, we square the
row sum.
Another (outer) loop to add the
squares of row sum over all rows
that have been fully read.

3Esc101, Programming

Inner loop: Row sum
Easy part first: assume we are at the
beginning of a row (have not read any
numbers yet) and write a loop to
calculate the row sum.

int a; /* the current integer */
int colindex; /* index of current column */
int rowsum; /* sum of row entries read so far */
int rowsumsq; /* square of the sum of row entries */
rowsum = 0;
colindex = 0;
while (colindex < n) { /* not finished reading n cols*/
scanf(“%d”, &a); /* read next number */
rowsum = rowsum + a; /* add to rowsum */
colindex = colindex + 1; /* increment colindex */

}
rowsumsq = rowsum * rowsum; /*square rowsum */

4Esc101, Programming

Outer Loop Structure
We have a code that reads the next
n integers from the terminal and
sums them.
Modify it so that it reads the next
m integers from the output of the
previous code, specifically the
value of rowsumsq and sums them.

5Esc101, Programming

Task: Modify code below so that it reads the
next m integers from the output of the
previous code, specifically the value of
rowsumsq and sums them.

int a; /* the current integer */
int colindex; /* index of current column */
int rowsum; /* sum of row entries read so far */
int rowsumsq; /* square of the sum of row entries */
rowsum = 0;
colindex = 0;
while (colindex < n) { /* not finished reading n cols*/
scanf(“%d”, &a); /* read next number */
rowsum = rowsum + a; /* add to rowsum */
colindex = colindex + 1; /* increment colindex */

}
rowsumsq = rowsum * rowsum; /*square rowsum */

6Esc101, Programming

Previous code modified to read the
next m integers from the output of
the previous code, specifically the
value of rowsumsq and sums them.

int rowindex; /* index of current row being read */
int sqsum; /* sum of col entries read so far */
sqsum = 0;
rowindex = 0;
while (rowindex < m) { /* not finished reading m rows*/
sqsum = sqsum + ``rowsumsq’’; /* add to sqsum */
rowindex = rowindex + 1; /* increment rowindex */

}
printf(“%d “,sqsum);

rowsumsq comes from previous
code. Let’s insert that code here.

Outer Loop: Still in Design Phase: incomplete and informal

7Esc101, Programming

int rowindex=0; /* index of current row being read */
int sqsum=0; /* sum of col entries read so far */

while (rowindex < m) { /* not finished reading m rows*/
int rowsum=0; /* sum of row entries read so far */
int a; /* the current integer */
int colindex=0; /* index of current column */
int rowsumsq; /* square of the sum of row entries */
while (colindex < n) { /* not finished reading n cols*/
scanf(“%d”, &a); /* read next number */
rowsum = rowsum + a; /* add to rowsum */
colindex++; /* increment colindex */
}
rowsumsq = rowsum * rowsum; /*square rowsum */

sqsum = sqsum + rowsumsq; /* add to sqsum */
rowindex++; /* increment rowindex */

}
printf(“%d “,sqsum);

Inner, Outer Loops Implemented

8Esc101, Programming

Problem 2
Read n, assume n >=2. Read n
integers, and print triplets of
consecutively positive input
integers that are Pythogorean,
skipping negative ints. For input

Output should be

Need a single loop, but several
counters.

8 1 -1 3 -3 4 -4 -5 5

3 4 5

9Esc101, Programming

int curr, prev, pprev;/* current, prev, pprev positive nos.*/
int n; /* number of integers */
int i; /* for loop counter */
int count = 0; /* no. of positive ints seen yet */
scanf(“%d”, &n);
for (i=0; i < n ; i++) {

scanf(“%d”, &curr);
if (curr <= 0) continue; /* skip non-positive nos. */
if (count == 0) { pprev = curr; count =1; }
else {

if (count == 1) { prev = curr; count =2; }
else{ /* count is 2 and will remain 2 */

if (pprev*pprev + prev*prev == curr*curr){
/* Pythagorean triple found */

printf(“%d %d %d\n”, pprev, prev, curr);}
pprev = prev;
prev = curr;

}
}

}
} // end for loop

10Esc101, Programming

int curr, prev, pprev,n, i, count = 0; scanf(“%d”, &n);
for (i=0; i < n ; i = i+1) {

scanf(“%d”, &curr);
if (curr <= 0) { continue; }
if (count == 0) { pprev = curr; count =1; }

else { if (count == 1) { prev = curr; count =2;
else { /* count is 2 and will remain 2 */

if (pprev*pprev + prev*prev == curr*curr){
printf(“%d %d %d\n”, pprev, prev, curr);}

pprev = prev;
prev = curr;

}

} }
}

8 -1 1 -3 3 4 -4 -5 5

curr

prev

pprev

0

ncount

i

8

0

-1

1

1

1

1

2

-3

3

3

3

2

4

4

3

4
5

-4

6

-5

7

5

3 4 5Output

8
11Esc101, Programming

A general principle of program
development

1. Break up your task into smaller sub-tasks, and
those sub-tasks into still smaller sub-tasks and
so on until each sub-task is easily solvable in a
function/block.

2. Write a function for each of the sub-tasks.

3. Design your program from the top-down,
big task to the small tasks.

I. Debug/test your program bottom-up.
II. Debug functions that perform

elementary tasks, and then move on to
testing more complex functions.

(Commonly, printf is used.)
12Esc101, Programming

Evaluation of f(f(a,b),b)
1. First evaluate inner f(a,b) for

a = 1, b=2.
2. This is 3.
3. So f(f(a,b),b) becomes f(3,2).
4. This is 5.
5. So output is

Example 3
What is printed by
the program?

int f (int a, int b) {
return a+b;

}

main () {
int a = 1, b = 2;
a = f(f(a,b),b);
printf(“%d %d”, a,b);

}

5 2

1. Execution proceeds similar
to evaluating mathematical
function expression.

2. Care needed to handle expr
with side effects.

Pure expressions do not change
the state of the program, e.g.,
1. a- b *c/d
2. f(f(a,b), f(f(a,b),a))

Expressions with side-effects
change the state of the
program for example,
1. a = a +1
2. f(a=b+1,b=a+1)

Example 4
What is printed by

the program?

Evaluate f(a=b+1,b=a+1).
How should we evaluate it?

Rule: All arguments are
evaluated before function
call is made.

BUT !
C doesn’t specify order,
in which arguments are
evaluated. This is left to
the compiler.

Let us evaluate function arguments
in left to right order.

int f (int a, int b) {
return b-a;

}

main () {
int a = 2, b = 1;

a = f(a=b+1, b=a+1);

printf(“%d %d”, a,b);
} a

b

2

1

2

3
main()

Expected
Output

1 3

Left-right OR right-left

We used left to right
evaluation. Expected

output:
Let us compile and run
on a CC machine, output

is:

What happened? The
compiler evaluated right
to left.

Output is

int f (int a, int b) {
return b-a;

}

main () {
int a = 2, b = 1;

a = f(a=b+1, b=a+1);

printf(“%d %d”, a,b);
}

1 3

-1 3

a

b

2

1

4

3

-1

-1 3

What was the mistake?
Actually, C does not specify the order in
which the arguments of a function should
be evaluated.
It leaves it to the compiler. Compilers
may evaluate arguments in different
orders.
Both answers are consistent with C
language!! What should we do?

Write your arguments to functions so that
the result is not dependent on the order
in which they are evaluated. Better still,
write them so that the operand
expressions are side-effect free.

For example

int f (int a, int b) {
return b-a;

}

main () {
int a = 2, b = 1;
a=b+1;
b=a+1;

a = f(a, b); /* operands do not have
side effects */

printf(“%d %d”, a,b);
}

Comma– as a separator
C allows multiple variables of the same
type to be defined as one statement,
separated by commas.

int a, b, c;

int a = 2, b = 5, c=15;

float x = 3.59, y = 4.5;

int x = 5, float y = 10.0;

Defines three integer
variables named a,b
and c. Initializes a to
2, b to 5 and c to 15.

Defines three integer
variables named a,b
and c.

Defines two float variables named x and y.
Initializes x to 3.59 and y to 10.0.

Examples (independent definitions)
a b

c

2 5

15

a b

c

3.59 10.0
x y

Compilation error!

Comma– as an operator
Comma as an operator is a binary
operator that takes two expressions as
operands.

Think of just like + or – or * or / or =
or == etc.. Some examples,

1. i+2, sum=sum-1;
2. scanf(“%d”,&m), sum=0, i=0;

Execution of expr1 , expr2 proceeds as
follows.
Evaluate expr1, discard its result and
then evaluate expr2 and return its value
(and type).

expr1 , expr2

	ESC101: Introduction to Computing
	Problem 1
	Double loops
	Inner loop: Row sum
	Outer Loop Structure
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Problem 2
	Slide Number 10
	Slide Number 11
	�A general principle of program development
	Example 3
	Example 4
	 Left-right OR right-left
	What was the mistake?
	For example
	Comma– as a separator
	Comma– as an operator

