
Adding 2 Numbers

Nov-15 1Esc101,FileIO

#include<stdio.h>
#include<stdlib.h>
int main(int argc, char *argv[]) {

if (argc != 3)
printf (“Bad args!\n");

else {
int a = atoi(argv[1]);
int b = atoi(argv[2]);
printf (“%d\n",a+b);

}
return 0;

}

$./a.out 3 4
7
$./a.out 3 -4
-1
$./a.out 3 four
3

$./a.out
Bad args!

$./a.out 3 4 5
Bad args!

Command Line Sorting

Nov-15 2Esc101,FileIO

int main(int argc, char *argv[]) {
int *ar, n;

n = argc - 1;
ar = (int *)malloc(sizeof(int) * n);
for (i=0; i<n; i++)

ar[i] = atoi(argv[i+1]);

merge_sort(ar, n); // or any other sort

for (i=0; i<n; i++)
printf("%d ",ar[i]);

return 0;
}

$./a.out 1 4 2 5 3 9 -1 6 -10 10
-10 -1 1 2 3 4 5 6 9 10

void merge_sort (
int *arr, int n)

{
…

}

Renaming Executable

Nov-15 3Esc101,FileIO

int main(int argc, char *argv[]) {
int *ar, n;

n = argc - 1;
ar = (int *)malloc(sizeof(int) * n);
for (i=0; i<n; i++)

ar[i] = atoi(argv[i+1]);

merge_sort(ar, n); // or any other sort

for (i=0; i<n; i++)
printf("%d ",ar[i]);

return 0;
}

$./sort 1 4 2 5 3 9 -1 6 -10 10
-10 -1 1 2 3 4 5 6 9 10

The flag “-o” of gcc can
be used to give user-
defined name to the
executable, e.g.
$ gcc –o sort myfile.c

void merge_sort (
int *arr, int n)

{
…

}

Reading from and Writing to
a File from C Program

Nov-15 4Esc101,FileIO

Files
 What is a file?

 Collection of bytes stored on secondary
storage like hard disks (not RAM).

 Any addressable part of the file system
in an Operating system can be a file.
 includes such strange things as /dev/null

(nothing), /dev/usb (USB port), /dev/audio
(speakers), and of course, files that a user
creates (/home/don/input.txt,
/home/don/Esc101/lab12.c)

Nov-15 Esc101,FileIO 5

File Access

 3 files are always connected to a C
program :
− stdin : the standard input, from

where scanf, getchar(), gets() etc.
read input from

− stdout : the standard output, to
where printf(), putchar(), puts() etc.
output to.

− stderr : standard error console.
Nov-15 Esc101,FileIO 6

File handling in C
1. Open the file for reading/writing etc.: fopen

• return a file pointer
• pointer points to an internal structure containing

information about the file:
• location of a file
• the current position being read in the file
• and so on.

FILE* fopen (char *name, char *mode)

2. Read/Write to the file
int fscanf(FILE *fp, char *format, …)
int fprintf(FILE *fp, char *format, …)

3. Close the File.
int fclose(FILE *fp)

Compared to scanf
and printf – a new
(first) argument fp
is added

Nov-15 Esc101,FileIO 7

Opening Files
FILE* fopen (char *name, char *mode)
 The first argument is the name of the file

─ can be given in short form (e.g. “inputfile”) or the full path
name (e.g. “/home/don/inputfile”)

 The second argument is the mode in which we
want to open the file. Common modes include:

– “r” : read-only. Any write to the file will fail. File
must exist.

– “w” : write. The first write happens at the beginning
of the file, by default. Thus, may overwrite the
current content. A new file is created if it does not
exist.

– “a” : append. The first write is to the end of the
current content. File is created if it does not exist.

Nov-15 Esc101,FileIO 8

Nov-15 Esc101,FileIO 9

Opening Files
 If successful, fopen returns a file pointer –

this is later used for fprintf, fscanf etc.
 If unsuccessful, fopen returns a NULL.
 It is a good idea to check for errors (e.g.

Opening a file on a CDROM using “w” mode
etc.)

Nov-15 Esc101,FileIO 9

Closing Files
 An open file must be closed after last use

 allows reuse of FILE* resources
 flushing of buffered data (to actually write!)

File I/O: Example
 Write a program that will take two

filenames, and print contents to the
standard output. The contents of the first
file should be printed first, and then the
contents of the second.

 The algorithm:
1. Read the file names.
2. Open file 1. If open failed, we exit
3. Print the contents of file 1 to stdout
4. Close file 1
5. Open file 2. If open failed, we exit
6. Print the contents of file 2 to stdout
7. Close file 2

Nov-15 10Esc101,FileIO

Nov-15 Esc101,FileIO 11

int main()
{
FILE *fp; char filename1[128], filename2[128];
scanf(“%s”, filename1);
scanf(“%s”, filename2);
fp = fopen(filename1, "r");
if(fp == NULL) {
fprintf(stderr, "Opening File %s failed\n", filename1);
return -1;

}
copy_file(fp, stdout);
fclose(fp);
fp = fopen(filename2, "r");
if (fp == NULL) {
fprintf(stderr, "Opening File %s failed\n", filename2);
return -1;

}
copy_file (fp, stdout);
fclose(fp);
return 0;

}
Nov-15 Esc101,FileIO 11

The Program: main

Nov-15 Esc101,FileIO 12

void copy_file(FILE *fromfp, FILE *tofp)
{

char ch;

while (!feof (fromfp)) {
fscanf (fromfp, "%c", &ch);
fprintf (tofp, "%c", ch);

}
}

Nov-15 Esc101,FileIO 12

The Program: copy_file

Some other file handling
functions

 int feof (FILE* fp);
− Checks whether the EOF is set for fp –

that is, the EOF has been encountered. If
EOF is set, it returns nonzero. Otherwise,
returns 0.

 int ferror (FILE *fp);
− Checks whether the error indicator has

been set for fp. (for example, write errors
to the file.)

Nov-15 Esc101,FileIO 13

Some other file handling
functions

 int fseek(FILE *fp, long int offset,
int origin);

 To set the current position associated with fp, to a
new position = origin + offset.

 Origin can be:
 SEEK_SET: beginning of file
 SEEK_CURR: current position of file pointer
 SEEK_END: End of file

 Offset is the number of bytes.
 int ftell(FILE *fp)

− Returns the current value of the position indicator
of the stream.

Nov-15 Esc101,FileIO 14

Opening Files: More modes

 There are other modes for opening
files, as well.
− “r+” : open a file for read and update. The

file must be present.
− “w+” : write/read. Create an empty file or

overwrite an existing one.
− “a+” : append/read. File is created if it

doesn’t exist. The file position for reading
is at the beginning, but output is appended
to the end.

Nov-15 Esc101,FileIO 15

File I/O example

Nov-15 16Esc101,FileIO

#include <stdio.h>
int main () {

FILE * fp = fopen("file.txt","w+");
fputs("This is tutorialspoint.com", fp);
fseek(fp, 7, SEEK_SET);
fputs(" C Programming Language", fp);
fclose(fp);

int c;
fp = fopen("file.txt","r");
while(1) {

c = fgetc(fp);
if(feof(fp)) break;
printf("%c", c);

}
fclose(fp);
return 0;

}
This is C Programming Language

FileI/O: stdout vs stderr
What is the output of following
program when run on a terminal:

Nov-15 17Esc101,FileIO

#include <stdio.h>
int main()
{
int input;
scanf("%d", &input);
fprintf(stdout, "Printing to STDOUT %d\n", input);
fprintf(stderr, "Printing to STDERR %d\n", input);
return 0;

} Printing to STDOUT 5
Printing to STDERR 5

INPUT
5

FileI/O: stdout vs stderr
What is the output of following
program when run on a terminal:

Nov-15 18Esc101,FileIO

#include <stdio.h>
int main()
{
int input;
scanf("%d", &input);
fprintf(stdout, "Printing to STDOUT %d", input);
fprintf(stderr, "Printing to STDERR %d", input);
return 0;

} Printing to STDOUT 5Printing to STDERR 5
Printing to STDERR 5Printing to STDOUT 5

INPUT
5

Stdout vs. Stderr (Intuition)

vs.

Nov-15 Esc101,FileIO 19

An Exercise

 Often, events in a system are logged on to a
particular file. (e.g. usb drive mounted, user
logs off etc.)

 These log files can be quite large. We are
usually interested in the latest events
(maybe the last 10 events.)

 The unix command “tail <filename>” prints
the last 10 lines of <filename>. Can you
program this?

 (Hint: Start at end of file, and use fseek.)
Nov-15 Esc101,FileIO 20

Nov-15 Esc101,FileIO 21

“Computer science is not about machines,
in the same way that astronomy is not
about telescopes. There is an essential
unity of mathematics and computer
science.”

-- 1990s Folklore. Sometimes attributed to Edsger W. Dijkstra.

	Adding 2 Numbers
	Command Line Sorting
	Renaming Executable
	Reading from and Writing to a File from C Program
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	File I/O: Example
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	File I/O example
	FileI/O: stdout vs stderr
	FileI/O: stdout vs stderr
	Stdout vs. Stderr (Intuition)
	Slide Number 20
	Slide Number 21

