
Adding 2 Numbers

Nov-15 1Esc101,FileIO

#include<stdio.h>
#include<stdlib.h>
int main(int argc, char *argv[]) {

if (argc != 3)
printf (“Bad args!\n");

else {
int a = atoi(argv[1]);
int b = atoi(argv[2]);
printf (“%d\n",a+b);

}
return 0;

}

$./a.out 3 4
7
$./a.out 3 -4
-1
$./a.out 3 four
3

$./a.out
Bad args!

$./a.out 3 4 5
Bad args!

Command Line Sorting

Nov-15 2Esc101,FileIO

int main(int argc, char *argv[]) {
int *ar, n;

n = argc - 1;
ar = (int *)malloc(sizeof(int) * n);
for (i=0; i<n; i++)

ar[i] = atoi(argv[i+1]);

merge_sort(ar, n); // or any other sort

for (i=0; i<n; i++)
printf("%d ",ar[i]);

return 0;
}

$./a.out 1 4 2 5 3 9 -1 6 -10 10
-10 -1 1 2 3 4 5 6 9 10

void merge_sort (
int *arr, int n)

{
…

}

Renaming Executable

Nov-15 3Esc101,FileIO

int main(int argc, char *argv[]) {
int *ar, n;

n = argc - 1;
ar = (int *)malloc(sizeof(int) * n);
for (i=0; i<n; i++)

ar[i] = atoi(argv[i+1]);

merge_sort(ar, n); // or any other sort

for (i=0; i<n; i++)
printf("%d ",ar[i]);

return 0;
}

$./sort 1 4 2 5 3 9 -1 6 -10 10
-10 -1 1 2 3 4 5 6 9 10

The flag “-o” of gcc can
be used to give user-
defined name to the
executable, e.g.
$ gcc –o sort myfile.c

void merge_sort (
int *arr, int n)

{
…

}

Reading from and Writing to
a File from C Program

Nov-15 4Esc101,FileIO

Files
 What is a file?

 Collection of bytes stored on secondary
storage like hard disks (not RAM).

 Any addressable part of the file system
in an Operating system can be a file.
 includes such strange things as /dev/null

(nothing), /dev/usb (USB port), /dev/audio
(speakers), and of course, files that a user
creates (/home/don/input.txt,
/home/don/Esc101/lab12.c)

Nov-15 Esc101,FileIO 5

File Access

 3 files are always connected to a C
program :
− stdin : the standard input, from

where scanf, getchar(), gets() etc.
read input from

− stdout : the standard output, to
where printf(), putchar(), puts() etc.
output to.

− stderr : standard error console.
Nov-15 Esc101,FileIO 6

File handling in C
1. Open the file for reading/writing etc.: fopen

• return a file pointer
• pointer points to an internal structure containing

information about the file:
• location of a file
• the current position being read in the file
• and so on.

FILE* fopen (char *name, char *mode)

2. Read/Write to the file
int fscanf(FILE *fp, char *format, …)
int fprintf(FILE *fp, char *format, …)

3. Close the File.
int fclose(FILE *fp)

Compared to scanf
and printf – a new
(first) argument fp
is added

Nov-15 Esc101,FileIO 7

Opening Files
FILE* fopen (char *name, char *mode)
 The first argument is the name of the file

─ can be given in short form (e.g. “inputfile”) or the full path
name (e.g. “/home/don/inputfile”)

 The second argument is the mode in which we
want to open the file. Common modes include:

– “r” : read-only. Any write to the file will fail. File
must exist.

– “w” : write. The first write happens at the beginning
of the file, by default. Thus, may overwrite the
current content. A new file is created if it does not
exist.

– “a” : append. The first write is to the end of the
current content. File is created if it does not exist.

Nov-15 Esc101,FileIO 8

Nov-15 Esc101,FileIO 9

Opening Files
 If successful, fopen returns a file pointer –

this is later used for fprintf, fscanf etc.
 If unsuccessful, fopen returns a NULL.
 It is a good idea to check for errors (e.g.

Opening a file on a CDROM using “w” mode
etc.)

Nov-15 Esc101,FileIO 9

Closing Files
 An open file must be closed after last use

 allows reuse of FILE* resources
 flushing of buffered data (to actually write!)

File I/O: Example
 Write a program that will take two

filenames, and print contents to the
standard output. The contents of the first
file should be printed first, and then the
contents of the second.

 The algorithm:
1. Read the file names.
2. Open file 1. If open failed, we exit
3. Print the contents of file 1 to stdout
4. Close file 1
5. Open file 2. If open failed, we exit
6. Print the contents of file 2 to stdout
7. Close file 2

Nov-15 10Esc101,FileIO

Nov-15 Esc101,FileIO 11

int main()
{
FILE *fp; char filename1[128], filename2[128];
scanf(“%s”, filename1);
scanf(“%s”, filename2);
fp = fopen(filename1, "r");
if(fp == NULL) {
fprintf(stderr, "Opening File %s failed\n", filename1);
return -1;

}
copy_file(fp, stdout);
fclose(fp);
fp = fopen(filename2, "r");
if (fp == NULL) {
fprintf(stderr, "Opening File %s failed\n", filename2);
return -1;

}
copy_file (fp, stdout);
fclose(fp);
return 0;

}
Nov-15 Esc101,FileIO 11

The Program: main

Nov-15 Esc101,FileIO 12

void copy_file(FILE *fromfp, FILE *tofp)
{

char ch;

while (!feof (fromfp)) {
fscanf (fromfp, "%c", &ch);
fprintf (tofp, "%c", ch);

}
}

Nov-15 Esc101,FileIO 12

The Program: copy_file

Some other file handling
functions

 int feof (FILE* fp);
− Checks whether the EOF is set for fp –

that is, the EOF has been encountered. If
EOF is set, it returns nonzero. Otherwise,
returns 0.

 int ferror (FILE *fp);
− Checks whether the error indicator has

been set for fp. (for example, write errors
to the file.)

Nov-15 Esc101,FileIO 13

Some other file handling
functions

 int fseek(FILE *fp, long int offset,
int origin);

 To set the current position associated with fp, to a
new position = origin + offset.

 Origin can be:
 SEEK_SET: beginning of file
 SEEK_CURR: current position of file pointer
 SEEK_END: End of file

 Offset is the number of bytes.
 int ftell(FILE *fp)

− Returns the current value of the position indicator
of the stream.

Nov-15 Esc101,FileIO 14

Opening Files: More modes

 There are other modes for opening
files, as well.
− “r+” : open a file for read and update. The

file must be present.
− “w+” : write/read. Create an empty file or

overwrite an existing one.
− “a+” : append/read. File is created if it

doesn’t exist. The file position for reading
is at the beginning, but output is appended
to the end.

Nov-15 Esc101,FileIO 15

File I/O example

Nov-15 16Esc101,FileIO

#include <stdio.h>
int main () {

FILE * fp = fopen("file.txt","w+");
fputs("This is tutorialspoint.com", fp);
fseek(fp, 7, SEEK_SET);
fputs(" C Programming Language", fp);
fclose(fp);

int c;
fp = fopen("file.txt","r");
while(1) {

c = fgetc(fp);
if(feof(fp)) break;
printf("%c", c);

}
fclose(fp);
return 0;

}
This is C Programming Language

FileI/O: stdout vs stderr
What is the output of following
program when run on a terminal:

Nov-15 17Esc101,FileIO

#include <stdio.h>
int main()
{
int input;
scanf("%d", &input);
fprintf(stdout, "Printing to STDOUT %d\n", input);
fprintf(stderr, "Printing to STDERR %d\n", input);
return 0;

} Printing to STDOUT 5
Printing to STDERR 5

INPUT
5

FileI/O: stdout vs stderr
What is the output of following
program when run on a terminal:

Nov-15 18Esc101,FileIO

#include <stdio.h>
int main()
{
int input;
scanf("%d", &input);
fprintf(stdout, "Printing to STDOUT %d", input);
fprintf(stderr, "Printing to STDERR %d", input);
return 0;

} Printing to STDOUT 5Printing to STDERR 5
Printing to STDERR 5Printing to STDOUT 5

INPUT
5

Stdout vs. Stderr (Intuition)

vs.

Nov-15 Esc101,FileIO 19

An Exercise

 Often, events in a system are logged on to a
particular file. (e.g. usb drive mounted, user
logs off etc.)

 These log files can be quite large. We are
usually interested in the latest events
(maybe the last 10 events.)

 The unix command “tail <filename>” prints
the last 10 lines of <filename>. Can you
program this?

 (Hint: Start at end of file, and use fseek.)
Nov-15 Esc101,FileIO 20

Nov-15 Esc101,FileIO 21

“Computer science is not about machines,
in the same way that astronomy is not
about telescopes. There is an essential
unity of mathematics and computer
science.”

-- 1990s Folklore. Sometimes attributed to Edsger W. Dijkstra.

	Adding 2 Numbers
	Command Line Sorting
	Renaming Executable
	Reading from and Writing to a File from C Program
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	File I/O: Example
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	File I/O example
	FileI/O: stdout vs stderr
	FileI/O: stdout vs stderr
	Stdout vs. Stderr (Intuition)
	Slide Number 20
	Slide Number 21

