Adding 2 Numbers

#include<stdio.h> $./a.out
#include<stdlib.h> Bad args!
int main(int argc, char *argv[]) {
if (argc 1= 3) $./a.out 3 4
printf ("Bad args!\n"): 7
else { _
int a = atoi(argv[1]): ;$1°/G°OUT 34
int b = atoi(argv[2]):
orintf (“%d\n" a+b): g /a.out 3 four
}
return O;
) $ /aout 345

Bad args!

Nov-15 Esc101,FilelO

Command Line Sorting

int main(int argc, char *argv[]) { void merge_sort (
int *ar, n; int *arr, int n)
{
n=argc - 1;
ar = (int *)malloc(sizeof(int) * n); }

for (i=0; i<n; i++)
ar[i] = atoi(argv[i+1]);

merge_sort(ar, n); // or any other sort

for (i=0; i<n; i++)
printf("%d " ar[i]);
return O; $./a.out 1 4
} -10-1123

Nov-15 Esc101,FilelO

6 -10 10

2539 -1
456910

Renaming Executable

int main(int argc, char *argv[]) { void merge_sort (
int *ar, n; int *arr, int n)
{
n=argc - 1;
ar = (int *)malloc(sizeof(int) * n); }
for (i=0; ikn; i++)
ar[i] = atoi(argv[i+1]);

The flag "-0" of gcc can
merge_sort(ar, n); // or any other be used to give user-
defined name to the

for (i=0; in; i++) executable, e.g.
printf("%d ".ar[i]); $ gcc -o sort myfile.c
return O; $ /sort 142539 -16-10 10
} 10-112345609 10

Nov-15 Esc101,FilelO 3

Reading from and Writing to
a File from C Program

Nov-15 Esc101,FilelO 4

Files

ov-15

What is a file?
Collection of bytes stored on secondary
storage like hard disks (not RAM).
Any addressable part of the file system
in an Operating system can be a file.

includes such strange things as /dev/null
(nothing), /dev/usb (USB port), /dev/audio
(speakers), and of course, files that a user

creates (/home/don/input.txt,
/home/don/Escl101/lab12.c)

Esc101,FilelO

File Access

. 3 files are always connected toa C
program :
- stdin : the standard input, from

where scanf, getchar(), gets() etc.
read input from

- stdout : the standard output, to
where printf(), putchar(), puts() etc.
output to.

~ stderr : standard error console.

ov-15 Esc101,FilelO

File handling in C
1. Open the file for reading/writing etc.: fopen

* returna file pointer

* pointer points to an internal structure containing
information about the file:

* location of a file
* the current position being read in the file

* and so on.
FILE* fopen (char *name, char *mode)

2. Read/Write to the file
int fscanf(FILE *fp, char *format, ..)
int fprintf(FILE *fp, .char *for

: Compared to scanf
3. _Close the File. and printf - a new
int fclose(FILE *fp) (first) argument fp

is added

Nov-15 Esc101,FilelO

Opening Files
FILE* fopen (char *name, char *mode)

The first argument is the name of the file

— can be given in short form (e.g. "inputfile”) or the full path
name (e.g. "/home/don/inputfile”)

The second argument is the mode in which we
want to open the file. Common modes include:

— 'r" : read-only. Any write to the file will fail. File
must exist.

—"w" : write. The first write happens at the beginning
of the file, by default. Thus, may overwrite the
current content. A new file is created if it does not
exist.

w _n

—"a" : append. The first write is to the end of the
current content. File is created if it does not exist.

Nov-15 Esc101,FilelO

Opening Files
If successful, fopen returns a file pointer -
this is later used for fprintf, fscanf etc.
If unsuccessful, fopen returns a NULL.

I't is a good idea to check for errors (e.g.
Opening a file on a CDROM using "w" mode
etc.)

Closing Files

An open file must be closed after last use
allows reuse of FILE* resources
flushing of buffered data (to actually writel)

Nov-15 Esc101,FilelO

File 1/0: Example

Nov-15

Write a program that will take two
filenames, and print contents to the
standard output. The contents of the first
file should be printed first, and then the
contents of the second.

The algorithm:

1. Read the file names.

2. Open file 1. If open failed, we exit

3. Print the contents of file 1 to stdout
4. Close file 1

5. Open file 2. If open failed, we exit

6. Print the contents of file 2 to stdout
7. Close file 2

Esc101,FilelO

10

FILE *fp: char filenamel[128], filename2[128]:

scanf("%s"”, filenamel);

scanf("%s", filename2);

fp = fopen(filenamel, "r");

if(fp == NULL) {
fprintf(stderr, "Opening File %s failed\n", filenamel);
return -1;

}

copy_file(fp, stdout);

fclose(fp):

fp = fopen(filename2, "r");

if (fp == NULL) {
fprintf(stderr, "Opening File %s failed\n", filename2);
return -1;

}

copy_file (fp, stdout):

fclose(fp):

\L;e'rur'n 0;
Nov- EOblcl,Fl:&:C

/ﬁt maind The Program: main \
{

/ The Program: copy_file \

void copy_file(FILE *fromfp, FILE *tofp)
{

char ch;

while (Ifeof (fromfp)) {
fscanf (fromfp, "%c", &ch):;
fprintf (tofp, "%c", ch);
}
}

r&sﬁ Ese0trFiteto ﬂz

Some other file handling
functions

. int feof (FILE* fp);

- Checks whether the EOF is set for fp -
that is, the EOF has been encountered. If
EOF is set, it returns nonzero. Otherwise,
returns O.

. Int ferror (FILE *fp);

- Checks whether the error indicator has
been set for fp. (for example, write errors
to the file.)

ov-15 Esc101,FilelO 13

Some other file handling

functions

. INt fseek(FILE *fp, long Int offset,
int origin);

+ To set the current position associated with fp, to a
new position = origin + of fsef.

<+ Origin can be:
- SEEK_SET: beginning of file
- SEEK_CURR: current position of file pointer
. SEEK_END: End of file

5 OffseT is the number of bytes.
. Int ftell(FILE *fp)

- Returns the current value of the position indicator
of the stream.

Nov-15 Esc101,FilelO 14

Nov-15

Opening Files: More modes

There are other modes for opening
files, as well.

"r+" . open a file for read and update. The
file must be present.

"w+" . write/read. Create an empty file or
overwrite an existing one.

“a+" . append/read. File is created if it
doesn't exist. The file position for reading
is at the beginning, but output is appended
to the end.

Esc101,FilelO

15

File I/0O example

#include <stdio.h>

int main () {
FILE * fp = fopen(“file.txt", "w+");
fputs("This is tutorialspoint.com", fp):
fseek(fp, 7, SEEK_SET):
fputs(" C Programming Language", fp);
fclose(fp):

int c;
fp = fopen(“file.txt","r");
while(1) {
c = fgetc(fp):
if(feof(fp)) break:
printf("%c", c):
}

fclose(fp):
r;(:,sri((')D;) This is C Programming Language

Nov-15 Esc101,FilelO 16

FileI/O: stdout vs stderr

#\What is the output of following
program when run on a terminal:

#include <stdio.h> INPUT
int main() 5
{

int input;

scanf("%d", &input);

fprintf(stdout, "Printing to STDOUT %d\n", input):;
fprintf(stderr, "Printing to STDERR %d\n", input);
return O;

} Printing to STDOUT 5
Printing to STDERR 5

Nov-15 Esc101,FilelO 17

FileI/O: stdout vs stderr

#\What is the output of following
program when run on a terminal:

#include <stdio.h> INPUT
int main() 5
{

int input;

scanf("%d", &input);

fprintf(stdout, "Printing to STDOUT %d", input);
fprintf(stderr, "Printing to STDERR %d", input);
return O;

} Printing to STOOTT=SPrimingoSIERR 5

Printing to STDERR 5Printing to STDOUT 5

Nov-15 Esc101,FilelO 18

Stdout vs. Stderr (Intuition)

Esc101,FilelO

19

Nov-15

An Exercise

Often, events in a system are logged on to a
particular file. (e.g. usb drive mounted, user
logs of f etfc.)

These log files can be quite large. We are
usually interested in the latest events
(maybe the last 10 events.)

The unix command “tail <filename>" prints
the last 10 lines of <filename>. Can you
program this?

(Hint: Start at end of file, and use fseek.)

Esc101,FilelO

20

Nov-15

“Computer science Is not about machines,
In the same way that astronomy Is not
about telescopes. There is an essential
unity of mathematics and computer

sclence.”

-- 1990s Folklore. Sometimes attributed to Edsger W. Dijkstra.

Esc101,FilelO 21

	Adding 2 Numbers
	Command Line Sorting
	Renaming Executable
	Reading from and Writing to a File from C Program
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	File I/O: Example
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	File I/O example
	FileI/O: stdout vs stderr
	FileI/O: stdout vs stderr
	Stdout vs. Stderr (Intuition)
	Slide Number 20
	Slide Number 21

