
Scope of a variable in C

Output?

Aug-15 1Esc101, Programming

#include <stdio.h>
int main(){

for (int i=1;i<=2;i++)
printf("%d\n",i);

return 0;
}

AVOID

Block scope of a variable

Output?
1
2

Aug-15 2Esc101, Programming

#include <stdio.h>
int main(){

{ //start block
int i;
for (i=1;i<=2;i++)

printf("%d\n",i);
} //end block

return 0;
}

AVOID

Block scope of a variable

Output?
Compiler
error: 'i'
undeclared

Aug-15 3Esc101, Programming

#include <stdio.h>
int main(){

{
int i;
for (i=1;i<=2;i++)

printf("%d\n",i);
}
printf("outside %d\n",i);

return 0;
}

Block scope of a variable

Output?
1
j=1
2
j=1

Aug-15 4Esc101, Programming

#include <stdio.h>
int main(){
int i;
for (i=1;i<=2;i++){

printf("%d\n",i);
int j=0;
printf(“j=%d\n",j+1);

}

return 0;
}

Back to Break
Used for exiting a loop forcefully
Example Program:

Read 100 integer inputs from a user.
Print the sum of inputs until a negative
input is found (Excluding the negative
number) or all 100 inputs are
exhausted.

Aug-15 5Esc101, Programming

Aug-15 6Esc101, Programming

int value;
int sum = 0;
int i;
for (i = 0; i < 100; i++) {

scanf(“%d”, &value);
if (value < 0) {

//-ve number: no need to go
// around the loop any more!!
break;

}
sum = sum + value;

}
printf(“%d”, sum);

To break or not to!
Use of break sometimes can simplify
exit condition from loop.

However, it can make the code a bit
harder to read and understand.

 Tip: if the loop terminates in at
least two ways which are sufficiently
different and requires substantially
different processing then consider
the use of termination via break for
one of them.

Continue
Used for skipping an iteration of a loop
The loop is NOT exited.
Example Program:

Read 100 integer inputs from a user.
Print the sum of only positive inputs.

Aug-15 8Esc101, Programming

Aug-15 9Esc101, Programming

int sum = 0;
int i, value;
for (i = 0; i < 100; i++) {

scanf(“%d”, &value);
if (value < 0) {

//-ve number: no need to add it
// to the sum. Go ahead and
// check the next input.
continue;

}
sum = sum + value;

}
printf(“%d”, sum);

Break and Continue
if there are nested loop: break and
continue apply to the nearest
enclosing loop only.

for (i = 0; i < 100; i++) {
for (j = 0; j < 100; j++) {

if (…) break;
}
…

}

Aug-15 10Esc101, Programming

Continue and Update Expr
Make sure continue does not bypass
update-expression for loops
 Specially for while and do-while loops

i = 0;
while (i < 100) {

scanf(“%d”, &value);
if (value < 0) continue;
sum = sum + value;
i++;

}
Aug-15 11Esc101, Programming

i is never incremented
potentially infinite loop!!

Continue and Update Expr
Correct Code:

i = 0;
while (i < 100) {

i++;
scanf(“%d”, &value);
if (value < 0) continue;
sum = sum + value;

}

Aug-15 12Esc101, Programming

Continue and Update Expr
Correct Code:

i = 0;
while (i < 100) {
scanf(“%d”, &value);
if (value < 0) {

i++;
continue;

}
sum = sum + value;
i++;

}
Aug-15 13Esc101, Programming

Class Quiz: How many times the loop is
executed?

A common bug

int a = 10 - 6;
while (a < 10) {

if (a = 5) {
printf(“%d\n“, a);

}
a=a+1;

}

int a =10 - 6;
while (a < 10) {

if (a == 5) {
printf(“%d“, a);

}
a=a+1;

}

Output
5
5
5
…

Probable intention:

Output
5

Assignment Operator =
The value of assignment expression is
same as the value of its RHS

LHS = RHS
It also has the side effect of updating
the “box” of LHS

Aug-15 15Esc101, Programming

x = 5 + 23

y = 12;
x = y = 5 + 23

(x=5) + (y=3)

Value is 28
x updated to 28

(x = (y = 5 + 23))
right associative

Result of + is 8
x becomes 5, y becomes 3
(eventually!)

Ternary operator ?:
Select among values of two expressions
based on a condition

condition ? true_expr : false_expr
Both expressions must be of compatible
type.
 The expression is called ternary expression.

Aug-15 16Esc101, Programming

int abs;
int val;
scanf (“%d”, val);
if (val < 0)

abs = -val;
else

abs = val;
printf(“%d”, abs);

int abs;
int val;
scanf (“%d”, val);
abs = (val < 0) ? –val : val;
printf(“%d”, abs);

int val;
scanf (“%d”, val);
printf(“%d”, (val < 0) ? –val : val);

Condition

value if
condition
is False

value if
condition
is True

ESC101: Introduction to
Computing

f(unction)

Aug-15 17ESC101, Functions

	Scope of a variable in C
	Block scope of a variable
	Block scope of a variable
	Block scope of a variable
	Back to Break
	Slide Number 6
	To break or not to!
	Continue
	Slide Number 9
	Break and Continue
	Continue and Update Expr
	Continue and Update Expr
	Continue and Update Expr
	Class Quiz: How many times the loop is executed?
	Assignment Operator =
	Ternary operator ?:
	ESC101: Introduction to Computing

