
Sep-15 ESC101 Midsem/Lab Exam 1

LAB Exam duration: 2:15 PM - 5:00 PM.

On Tuesday, 8th Sep @ 2:15 PM
B1,B2,B3 (Monday Lab Batch):

Reporting at Computer Center Lab CC L2
B4,B5,B6 (Tuesday Lab Batch):

Reporting at New Core Labs

On Wednesday, 9th Sep @ 2:15 PM
B7,B8,B9 (Thursday Lab Batch):

Reporting at Computer Center Lab CC L2
B10,B11,B12 (Wednesday Lab Batch):

Reporting at New Core Labs

Comma– as an operator
Comma as an operator is a binary
operator that takes two expressions as
operands.

Think of just like + or – or * or / or =
or == etc.. Some examples,

1. i+2, sum=sum-1;
2. scanf(“%d”,&m), sum=0, i=0;

Execution of expr1 , expr2 proceeds as
follows.
Evaluate expr1, discard its result and
then evaluate expr2 and return its value
(and type).

expr1 , expr2

2 Esc101, Programming

Comma Operator execution

Commas are evaluated from left to
right. That is,

scanf(“%d”,&m), sum=0, i=0;
is executed as

(scanf(“%d”,&m), sum=0), i=0;
The comma operator has the lowest
precedence of all operators in C. So

a=a+5, sum = sum + a
is equivalent to

(a=a+5), (sum = sum + a)

int a = 1; int sum = 5;
a=a+5, sum = sum +
a;

3 Esc101, Programming

i = i+10; can be shortened to
i += 10;

+= is a new assignment operator.
Similarly, +=, -=, *=, /=, %=
expr1 op= expr2 is equivalent to

expr1 = (expr1) op (expr2).
Eg. x %= y+1 is x = x%(y+1) .
Precedence rules are the same as
that of = . (Right to left assoc.)

3Esc101, Programming

Assignment operators

What is the difference between
i++ and ++i in C ?
The expression (i++) has the
 value i
 side-effect i=i+1
The expression (++i) has the
 value i+1
 side-effect i=i+1
Eg. (i == ++i) is always FALSE.
Eg. (i == i++) is always TRUE.

4Esc101, Programming

(In)(De)crement operators

For an array we
have seen that []
acts as a dereferencing operator.

Another
such operator is * .
 Can act on an array address.

Eg. s[2] is the same as *(s+2).

5Esc101, Programming

Dereferencing operators
int main() {
int s[10];
read_into_array(s,10);
.........

s[0] s[1] s[2] s[9]s

s+2

C Explanation: 3[s] = *(s+3) =
s[3]
So the above simply updates
s[3] to s[2]+2 .

6Esc101, Programming

Dereferencing operators

Quiz:
Is 3[s] = s[2] + 2; a valid C

expression?

ESC101: Introduction to
Computing

Strings

8Esc101, Programming

Recap about arraysBasics: Arrays are
defined as follows.
float w[100];
int num[10];
char s[10];
….

w

w[0] w[1] w[2] w[99]

array of floats

s[0] s[1] s[2] s[9]s

array of characters

float w[100]
defines 100
variables of type
float. Their names
are indexed:
w[0],w[2],…w[99]

array of ints

num

It also defines a
variable called w
which stores the
address of w[0].

num[0] num[1] num[2] num[9]

Esc101, Programming 9

Specify the array size. size must be at least equal to the
number of initialized values. Array elements assigned in index
order. Remaining elements are set to 0.

How can we create an int array num[] and initialize it to:

num 3-2 5 -7 19 103 11

1. Initial values are placed within curly braces separated by
commas.

2. The size of the array need not be specified. It is set to
the number of initial values provided.

3. Array elements are assigned in sequence in the index
order. First constant is assigned to array element [0],
second constant to [1], etc..

Method 1 int num[] = {-2,3,5,-7,19, 103, 11};

int num[10] = {-2,3,5, -7, 19, 103, 11};Method 2

Esc101, Programming 10

int num[] = {-2,3,5,-7,19,103,11};

Recommended method: array size determined
from the number of initialization values.

Is this correct?
int num[6] = {-2,3,5,-7,19,103,11};

Why?
1. num is declared to be an int array of

size 6 but 7 values have been initialized.
2. Number of initial values must be less

than equal to the size specified.

int num[100] ={0,-1,1,-1};Is this correct?

YES! Creates num as an array of size 100. First 4 entries
are initialized as given. num[4] … num[99] are set to 0.

NO! it won’t compile!

num
0 -1 1 -1 0 0 0

11 Esc101, Programming

Initialization values could be constants or
constant expressions. Constant expressions are
expressions built out of constants.

int num[] = { 109, 7+3, 25*1023 };

Type of each initialization constant should be
promotable/demote-able to array element type.

Float constants 1.09 and 25.05 downgraded to int

int num[] = { 1.09, ‘A’, 25.05}; E.g.,

int curr = 5;
int num[] = { 2, curr*curr+5};

Would
this work?

YES! ANSI C allows constant expressions AND
simple expressions for initialization values.
“Simple” is compiler dependent.

Esc101, Programming 12

Character array initialization

s ‘N’‘I’ ‘ ’ ‘a’ ‘m’ ‘ ‘ ‘D’ ‘I’‘O’

s[0] s[1] s[2] s[3] s[4] s[5] s[6] s[7] s[8]

‘\0’

Character arrays may be initialized like arrays of any
other type. Suppose we want the following char array.

We can write: s[]={‘I’,’ ‘,’a’,’ m’,’ ’,’D’,’O’,’N’,’\0’ };

BUT! C allows us to define string
constants. We can also write:

s[] = “I am DON”;

1. “I am DON” is a string constant. Strings constants in C
are specified by enclosing in double quotes.

2. It is equivalent to a character array ending with ‘\0’.
3. The ‘\0’ character (also called NULL char) is

automatically added to the end.
Esc101, Programming 13

Printing strings
We have used string constants many times. Can you recall?

printf and scanf: the first argument is always a string.
1. printf(“The value is %d\n”, value);
2. scanf(“%d”, &value);

Strings are printed using %s option.

printf(“%s”, “I am DON”); I am DON
Output

E.g. 1

char str[]=“I am GR8DON”;
printf(“%s”, str); I am GR8DON

Output
E.g. 2

This NULL char is
not printed.

str
‘I’ ‘m’ ‘G’ ‘R’ ‘8’ ‘D’ ‘O’ ‘N’ ‘\0’‘a’‘ ’ ‘ ’

str[0] str[2] str[4] str[6] str[8] str[11]
State of memory after definition of str
in E.g. 2. Note the NULL char added in
the end. Esc101, Programming 14

	Slide Number 1
	Comma– as an operator
	Comma Operator execution
	Assignment operators
	(In)(De)crement operators
	Dereferencing operators
	Dereferencing operators
	ESC101: Introduction to Computing
	Recap about arrays
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Character array initialization
	Printing strings

