
Assigning structure variables

x

y

x

y

leftbot righttop

1. We can assign a structure 
variable to another structure 
variable

2. The statement s=r; does this.
3. Structures are assignable

variables, unlike arrays!
4. Structure name is not a pointer, 

unlike arrays.

r

struct rect r,s;
r.leftbot.x = 0;
r.leftbot.y = 0;
r.righttop.x = 1;
r.righttop.y = 1;
s=r;

x0

0

1

1

After the assignment

s

x

y

x

y

leftbot righttop

x0

0

1

1

1



Passing structures..?struct rect { struct point leftbot;
struct point righttop; };

int area(struct rect r) {
return 

(r.righttop.x – r.leftbot.x) * 
(r.righttop.y – r.leftbot.y);

}
void fun() {

struct rect r1 ={{0,0}, {1,1}};
area(r1); 

}

x

y

x

y

leftbot righttopr Usually NO. E.g., to pass struct 
rect as parameter, 4 integers 
are copied. This is expensive.

But is it efficient to 
pass structures or to 
return structures?

We can pass structures 
as parameters, and 
return structures from 
functions, like the 
basic types int, char, 
double etc..

Same for returning structures

So what should 
be done  to pass 
structures to 
functions?

2Esc101, Structures 



Passing structures..?struct rect { struct point leftbot;
struct point righttop;};

int area(struct rect *pr) {
return 
((*pr).righttop.x – (*pr).leftbot.x) * 
((*pr).righttop.y – (*pr).leftbot.y);
}
void fun() {

struct rect r ={{0,0}, {1,1}};
area (&r);

}

x

y

x

y

leftbot righttopr

Now only one pointer is 
passed instead of a 
large struct.

area() uses a pointer 
to struct rect pr as a 
parameter, instead of 
struct rect itself.

Instead of passing 
structures, pass 
pointers to structures.

Same for returning structures 3Esc101, Structures 



Structure Pointersstruct point {
int x; int y;}; 

struct rect { 
struct point leftbot;
struct point righttop;

};
struct rect *pr;

1. pr is pointer to struct rect.
2. To access a field of the 

struct pointed to by struct
rect, use

(*pr).leftbot
(*pr).righttop

3. Bracketing (*pr) is essential
here. * has lower 
precedence than . 

4. To access the x field of 
leftbot, use (*pr).leftbot.x

pr

x

y

x

y

leftbot righttop

0

0

1

1

(*pr).leftbot.y (*pr).righttop.y

(*pr).righttop.x

Addressing fields
via the structure’s 

pointer

(*pr).leftbot.x

4Esc101, Structures 



Structure Pointersstruct point {
int x; int y;}; 

struct rect { 
struct point leftbot;
struct point righttop;

};
struct rect *pr;

1. Pointers to structures are used 
so frequently that a shorthand 
notation (->) is provided.

2. To access a field of the struct
pointed to by struct rect, use

pr->leftbot
3. -> is one operator. To access 

the x field of leftbot, use
pr->leftbot.x

3. -> and . have same precedence 
and are left-associative. 
Equivalent to (pr->leftbot).x 

pr

x

y

x

y

leftbot righttop

0

0

1

1

pr->leftbot.y pr->righttop.y

Addressing fields
via the structure’s 
pointer (shorthand)

pr->leftbot.x pr->righttop.x

pr->leftbot is equivalent 
to (*pr).leftbot

5Esc101, Structures 



Passing struct to functions
When a struct is passed directly, it is 
passed by copying its contents
 Any changes made inside the called function 

are lost on return
 This is same as that for simple variables
When a struct is passed using pointer,
 Change made to the contents using pointer 

dereference are visible outside the called 
function

6Esc101, Structures 



Dynamic Allocation of struct
Similar to other data types
sizeof(…) works for struct-s too

struct point* pts;
int i;
pts = (struct point*) malloc(6 * sizeof(struct 
point));
for (i = 0; i < 6; i++)

pts[i] = make_point(i, i);

x

y

pts x

y

x

y

x

y

x

y

x

y

pts[0] pts[1] pts[2] pts[3] pts[4] pts[5]

0

0

1

1

2

2

3

3

4

4

5

5

7Esc101, Structures 



(Re)defining a Type - typedef
When using a structure data type, it gets 
a bit cumbersome to write struct followed 
by the structure name every time.
Alternatively, we can use the typedef
command to set an alias (or shortcut).

struct point {
int x; int y;

}; 
typedef struct point Point; 
struct rect { 

Point leftbot;
Point righttop;

};

typedef struct point {
int x; int y;

} Point; 

We can merge struct 
definition and 
typedef:

8Esc101, Structures 



More on typedef
typedef may be used to rename any type
 Convenience in naming
 Clarifies purpose of the type
 Cleaner, more readable code
 Portability across platforms

Syntax
typedef Existing-Type NewName;

 Existing type is a base type or compound type
 NewName must be an identifier (same rules as 

variable/function name)

9Esc101, Structures 



More on typedef

typedef char* String; 
// String: a new name to char pointer 
typedef int size_t; // Improved

// Readability
typedef struct point* PointPtr; 
typedef long long int64; // Portability 
as it’s at least a 64-bit integer 
OR
typedef long long int int64; 

10Esc101, Structures 



Practical Example: Revisited
Customer information
Struct cust_info { 

int Account_Number;
int Account_Type;
char *Customer_Name;
char* Customer_Address;
bitmap Signature_scan; // user defined type bitmap

} ;
Customer can have more than 1 accounts
 Want to keep multiple accounts for a 

customer together for easy access
11Esc101, Structures 



Customer Information : Updated
“Link” all the customer accounts together 
using a “chain-of-pointers”
Struct cust_info { 

int Account_Number;
int Account_Type;
char *Customer_Name;
char* Customer_Address;
bitmap Signature_scan; // user defined type bitmap
struct cust_info* next_account;

} ;
Why not (?): 
 struct cust_info next_account;

12Esc101, Structures 

Error: Field 
next_account has 

incomplete type



name
next

cust

A B A C C A

cust[0] cust[1] cust[2] cust[3] cust[4] cust[5]

NULLNULLNULL

cust[i].next, cust[i].next->next, 
cust[i].next->next->next etc., 
when not NULL, point to the “other”
records of the same customer

13Esc101, Structures 



Data Structure- Eg. Linked List
A linear, dynamic data structure, 
consisting of nodes. Each node consists 
of two parts:
 a “data" component, and
 a “next" component, which is a pointer to the 

next node (the last node points to nothing).

Oct-15 Esc101, DataStructures 14



Linked List : A Self-referential structure
Example:
struct node {

int data;
struct node *next;

};

data

10

next

struct node 

1. Defines the structure struct node, which will be used as a 
node in a “linked list” of nodes. 

2. Note that the field next is of type struct node *
3. If next was of type struct node, it could not be permitted 

(recursive definition, of unknown or infinite size). 

An example of a (singly) linked list structure is:

4 2 1 -2 NULL
head

Oct-15 Esc101, DataStructures 15

There is only one link (pointer) from each node, 
hence, it is also called “singly linked list”.

Oct-15 Esc101, DataStructures 15


	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Passing struct to functions
	Dynamic Allocation of struct
	(Re)defining a Type - typedef
	More on typedef
	More on typedef
	Practical Example: Revisited
	Customer Information : Updated
	Slide Number 13
	Data Structure- Eg. Linked List
	Slide Number 15

