
ESC101: Introduction to
Computing

Structures

Motivation
 Till now, we have used data types int, float, char,

arrays (1D, 2D,...) and pointers.
 What if we want to define our own data types based on

these?
 A geometry package – we want to define a point as

having an x coordinate, and a y coordinate.
 Student data – Name and Roll Number

− array of size 2?
− two variables:

− int point_x , point_y;
− char *name; int roll_num;

2Esc101, Structures

Motivation
 A geometry package – we want to define a point as

having an x coordinate, and a y coordinate.
 Student data – Name and Roll Number

− array of size 2? (Can not mix TYPES)
− two variables:

− int point_x , point_y;
− char *name; int roll_num;

− There is no way to indicate that they are
part of the same point!

− requires a disciplined use of variable names
 Is there any better way ?

3Esc101, Structures

Motivation: Practical Example
Write a program to manage customer
accounts for a large bank.
Customer information as well as account
information, for e.g.:
 Account Number
 Account Type
 Customer Name
 Customer Address
 Signature scan

int
int (enum – not covered)
char*/char[]
char*/char[]

bitmap image
(2-D array of bits)

4Esc101, Structures

Example: Enumerated types
Account type via Enumerated Types.
Enumerated type allows us to create our own
symbolic name for a list of related ideas.
 The key word for an enumerated type is enum.

We could create an enumerated type to
represent various “account types”, by using the
following C statement:
enum act_Type { savings, current, fixDeposit, minor };

5Esc101, Structures

Example: Enumerated types
Account type via Enumerated Types.

enum act_Type { savings, current, fixDeposit, minor };

enum act_Type a;

a = current;

if (a==savings)
printf(“Savings account\n”);

if (a==current)
printf(“Current account\n”);

6Esc101, Structures

Enumerated
types provide
a symbol to
represent one
state out of
several
constant
states.

Structures

This defines a structure called
point containing two integer
variables (fields), called x and y.

struct point {
int x;
int y;

};
struct point pt;

struct point pt defines a variable
pt to be of type struct point.

x

y

pt

memory depiction of pt

• A structure is a collection, of variables, under a
common name.

• The variables can be of different types (including
arrays, pointers or structures themselves!).

• Structure variables are called fields.

7Esc101, Structures

Structures
• The x field of pt is accessed as pt.x.
• Field pt.x is an int and can be used as

any other int.
• Similarly the y field of pt is accessed

as pt.y

pt.x = 0;
pt.y = 1;

struct point {
int x;
int y;

};
struct point pt;

memory depiction of ptx

y

pt

1

0

8Esc101, Structures

struct point {
int x; int y;

}

struct point pt1,pt2;
struct point pts[6];

struct point is a type.
It can be used just
like int, char etc..

We can define array
of struct point also.

x

y

pts

x

y

x

y

x

y

x

y

x

y

pts[0] pts[1] pts[2] pts[3] pts[4] pts[5]
int i;
for (i=0; i < 6; i=i+1) {

pts[i].x = i;
pts[i].y = i;

}

Read pts[i].x as (pts[i]).x
The . and [] operators have same
precedence. Associativity: left-right.

For now,
define structs
in the
beginning of
the file, after
#include.

Structures

9Esc101, Structures

Structures
struct point {

int x; int y;
};
struct point pts[6];
int i;
for (i=0; i < 6; i=i+1)
{

pts[i].x = i;
pts[i].y = i;

}

x

y

pts x

y

x

y

x

y

x

y

x

y

pts[0] pts[1] pts[2] pts[3] pts[4] pts[5]

0

0

1

1

2

2

3

3

4

4

5

5

State of memory after the
code executes.

10Esc101, Structures

Reading structures (scanf ?)struct point {
int x; int y;

};
int main() {

int x, y;
struct point pt;
scanf(“%d%d”, &(pt.x),&(pt.y));
return 0;

}

1. You can not read a structure directly using scanf!

2. Read individual fields using scanf (note the &).

3. A better way is to define our own functions to read
structures
 to avoid cluttering the code!

11Esc101, Structures

Functions returning structuresstruct point {
int x; int y;

};
struct point make_point

(int x, int y)
{

struct point temp;
temp.x = x;
temp.y = y;
return temp;

}
int main() {

int x, y;
struct point pt;
scanf(“%d%d”, &x,&y);
pt = make_point(x,y);
return 0;

}

1. make_point(x,y) creates
a struct point given
coordinates (x,y).

2. Note: make_point(x,y)
returns struct point.

3. Functions can return
structures just like int,
char, int *, etc..

4. We can also pass struct
parameters. struct are
passed by copying the
values.

Given int coordinates x,y, make_point(x,y) creates
and returns a struct point with these coordinates.

12Esc101, Structures

Functions with structures as parameters
include <stdio.h>
include <math.h>
struct point {

int x; int y;
};
double norm2(struct point p) {

return sqrt (p.x*p.x + p.y*p.y);
}
int main() {

int x, y;
struct point pt;
scanf(“%d%d”, &x,&y);
pt = make_point(x,y);
printf(“distance from origin

is %f ”, norm2(pt));
return 0;

}

The norm2 or Euclidean
norm of point (x,y) is

22 yx +

norm2(struct point p)
returns Euclidean norm of
point p.

13

Structures inside structures

struct point {
int x; int y;

};

1. Recall, a structure definition
defines a type.

2. Once a type is defined, it can
be used in the definition of new
types.

3. struct point is used to define
struct rect. Each struct rect
has two instances of struct
point.

struct rect {
struct point leftbot;
struct point righttop;

};
struct rect r;

x

y

x

y

leftbot righttopr r is a variable of type struct
rect. It has two struct point
structures as fields.
So how do we refer
to the x of leftbot
point structure of r?

14Esc101, Structures

struct point {
int x;
int y;

};
struct rect {

struct point leftbot;
struct point righttop;

};
int main() {

struct rect r;
r.leftbot.x = 0;
r.leftbot.y = 0;
r.righttop.x = 1;
r.righttop.y = 1;
return 0;

}

x

y

x

y

leftbot righttop

0

0

1

1

r

r.leftbot.y

r.leftbot.x

r.righttop.y

r.righttop.x

Addressing nested fields
unambiguously

15Esc101, Structures

Initializing structures
struct point {

int x; int y;
};
1. Initializing structures is very

similar to initializing arrays.
2. Enclose the values of all the

fields in braces.
3. Values of different fields are

separated by commas.

struct rect {
struct point leftbot;
struct point righttop;

};
struct point p = {0,0};
struct point q = {1,1};
struct rect r = {{0,0}, {1,1}};

p (0,0)

(1,1)
q

r

16Esc101, Structures

Assigning structure variables

x

y

x

y

leftbot righttop

1. We can assign a structure
variable to another structure
variable

2. The statement s=r; does this
3. Structures are assignable

variables, unlike arrays!

r

struct rect r,s;
r.leftbot.x = 0;
r.leftbot.y = 0;
r.righttop.x = 1;
r.righttop.y = 1;
s=r;

x0

0

1

1

x

y

x

y

leftbot righttops

Before the assignment
17Esc101, Structures

Assigning structure variables

x

y

x

y

leftbot righttop

1. We can assign a structure
variable to another structure
variable

2. The statement s=r; does this.
3. Structures are assignable

variables, unlike arrays!

r

struct rect r,s;
r.leftbot.x = 0;
r.leftbot.y = 0;
r.righttop.x = 1;
r.righttop.y = 1;
s=r;

x0

0

1

1

After the assignment

s

x

y

x

y

leftbot righttop

x0

0

1

1

18

	ESC101: Introduction to Computing
	Motivation
	Motivation
	Motivation: Practical Example
	Example: Enumerated types
	Example: Enumerated types
	Slide Number 7
	Structures
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18

