ESC101: Introduction to
Computing

Structures

d

Motivation

. Till now, we have used data types int, float, char,
arrays (1D, 2D,...) and pointers.

. What if we want to define our own data types based on
these?

. A geometry package - we want to define a point as
having an x coordinate, and a y coordinate.

. Student data - Name and Roll Number
- array of size 2?

~ two variables:
- Int point_x , point_y;
~ char *name; int roll_num;

Esc101, Structures

Motivation

. A geometry package - we want to define a point as
having an x coordinate, and a y coordinate.

. Student data - Name and Roll Number
- array of size 2? (Can not mix TYPES)
- two variables:
- Iint point_x , point_y:
- char *name; int roll_num;

- There is no way to indicate that they are
part of the same point!

- requires a disciplined use of variable names
. Is there any better way ?

Esc101, Structures

Motivation: Practical Example

#® Worite a program to manage customer
accounts for a large bank.

Customer information as well as account
information, for e.g.:
s Account Number int
s Account Type int (enum - not covered)
s Customer Name char*/char]]
» Customer Address char*/char[]
= Signature scan bitmap image
(2-D array of bits)

Esc101, Structures

Example: Enumerated types

Account type via Enumerated Types.

#® Enumerated type allows us to create our own
symbolic name for a list of related ideas.

= The key word for an enumerated type is enum.

® We could create an enumerated type to
represent various "account types”, by using the
following C statement:

enum act_Type { savings, current, fixDeposit, minor };

Esc101, Structures

Example: Enumerated types

Account type via Enumerated Types.
enum act_Type { savings, current, fixDeposit, minor };

enum act_Type a;
a = current;

If (a==savings)
printf(“Savings account\n”);

If (a==current)
printf(“Current account\n”);

Esc101, Structures

Enumerated

types provide
a symbol to
represent one
state out of
several
constant
states.

Structures

e A structure is a collection, of variables, under a
common name.

* The variables can be of different types (including
arrays, pointers or structures themselves!).

« Structure variables are called fields.

struct point { This defines a structure called
Int x; point containing two integer
int y; variables (fields), called x and y.
). struct point pt defines a variable
struct point pt; pt to be of type struct point.
Pt |
LA G memory depiction of pt

Esc101, Structures

Structures

* The x field of pt is accessed as pt.x.

* Field pt.x is an int and can be used as
any other int.

* Similarly the y field of pt is accessed
as pt.y

struct point {
int x; pt p—
), 05 Y7 X| O ||| memory depiction of pt
struct point pt. Y Z
pt.x = 0
pt.y =

Esc101, Structures

Structures

struct point { struct point is a type. ||For now,
int x; int y; It can be used just define structs
} like int, char etc.. in the
beginning of
struct point ptl,pt2: | We can define array || the file, after
struct point pts[6]; of struct point also. #tinclude.

pts

'I>))))))
X X X X X X
))))))

pts[O] pts[1] pts[2] pts[3] pts[4] pts[5]

int i; : :
e A .. Read pts[i]l.x as (pts[i]).x

for (i=0: I 6_ .','Hl){ The . and [] operators have same
PtS[l].x - 'l d A ° to ot . I ft . ht
otsfily = i: precedence. Associativity: left-right.

Esc101, Structures 9

Structures

struct point {
int x; int y:
}.

s:rrucf point pts[6]:
int i;

for (i=0; i < 6; i=i+l1)
{

ptfs

ptsfil.x = i.
ptslil.y = i.
} State of memory after the
code executes.
x 0O x| 1 x| 2 x| 3 x 4 x| 9
pts[O] pts[1] pts[2] pts[3] pts[4] pts[5]

Esc101, Structures

10

struct point { Reading structures (scanf ?)

int x; int y;
}:
int main() {
int x, y:.
struct point pt;
scanf("%d%d", &(pt.x),&(pt.y)):
return O;
}

1. You can not read a structure directly using scanf!
.. Read individual fields using scanf (note the &).
;. A better way is to define our own functions to read

structures
o to avoid cluttering the code!

Esc101, Structures 11

struct point {

Functions returning structures

int x; int y;
). make_point(x,y) creates
struct point make_point a struct point given
(int x, int y) coordinates (x,y).
{
struct point temp; Note: make_point(x,y)
temp.x = Xx; refurns struct point.
temp.y = y.
return temp: Functions can return
} structures just like int,
int main() { char, int *, etc..
int x, y:
struct point pt: We can also pass struct
scanf("%d%d", &x,&y): parameters. struct are
pt = make_point(x,y): passed by copying the
return O; values.
}

Given int coordinates x,y, make_point(x,y) creates

and returns a struct poi ith these coordinates.

rucrures

12

Functions with structures as parameters

include <stdio.h>

includ th.h>
str'lt?:::‘rupcfin;'m{a The norm2 or Euclidean

int x; int y; norm of point (x,y) is

). 2 2
double norm2(struct point p) (\/X Ty

return sqrt (p.x*p.x + p.y*p.y):

} norm2(struct point p)
int main() { r'e:'::ns Euclidean norm of
int x, y: point p-

struct point pt;

scanf("%d%d"”, &x,4&y):

pt = make_point(x,y):

printf("distance from origin
is %f ", norm2(pt)):

return O;

13

Structures inside structures

struct point {
int x; int y:

};

. Recall, a structure definition
defines a type.

.. Once a type is defined, it can
be used in the definition of new

struct rect {
struct point leftbot:
struct point righttop:

types.

. struct point is used to define
struct rect. Each struct rect
has two instances of struct
point.

ftruc'r rect r,;

"I leftbot righttop
NI
Y : Y :

r is a variable of type struct
rect. It has two struct point
structures as fields.

So how do we refer
to the x of leftbot
point structure of r?

Esc101, Structures 14

struct point { r.leftbot.y r.righttop.y

:::I ;f r iieftbo'r.x r.righttop|x
1'",”” rect { r 'effbot righttop
struct point leftbot: — g S
struct point righttop: x| 9 J|| xLL
) —
int main() { TV 0 Jyl Y T
struct rect r;

r.leftbot.x = O;
r.leftbot.y = O;
r.righttop.x = 1;
r.righttop.y = 1;
return O;

Addressing nested fields
unambiguously

Esc101, Structures

Initializing structures

struct point {
int x; int y:
).

1. Initializing structures is very

.. Enclose the values of all the
fields in braces.

5. Values of different fields are
separated by commas.

(1,1)

struct rect {
struct point leftbot;
struct point righttop:
}:
struct point p = {0,0}:
struct point q = {1,1};
struct rect r = {{0,0}, {1,1}}.

Esc101, Structures

(0.0)

16

Assigning structure variables

struct rect r,s;

r.leftbot.x = O;

r.leftbot.y = O;

r.righttop.x = 1;
r.righttop.y = 1;
s=r;

. We can assigh a structure
variable to another structure
variable

.. The statement s=r; does this

;. Structures are assignable
variables, unlike arrays!

leftbot righttop

))
x\—/ x\—/
))
Y%/ Y%/

"I leftbot righttop
x 0O x| 1

Before the assignment

Esc101, Structures

17

Assigning structure variables

struct rect r,s;
r.leftbot.x = O;
r.leftbot.y = O;
r.righttop.x = 1;
r.righttop.y = 1;

1.

We can assignh a structure
variable to another structure
variable

The statement s=r; does this.
Structures are assignable

S=r, variables, unlike arrays!
leftbot righttop leftbot righttop
x 0O x| 1 x 0O x| 1

After the assignment 15

	ESC101: Introduction to Computing
	Motivation
	Motivation
	Motivation: Practical Example
	Example: Enumerated types
	Example: Enumerated types
	Slide Number 7
	Structures
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18

