
CS671A/CS671: Introduction to Natural Language Processing

Mid-semester exam

Time: 2 hours 21-Feb.-2018
Max marks: 80

1. Answer all 3 questions. The question paper has 2 pages.

2. You can refer to your handwritten class notes and class slides. No other paper or electronic docu-
ments/gadgets are allowed.

3. Keep your answers precise and brief.

4. Do all parts of a question together. Do not mixup answers to parts of different questions
in the answer script.

1. (a) In a corpus of 10000 documents you randomly pick a document, say D, which has a total of 250
words and the word ‘data’ occurs 20 times. Also, the word ‘data’ occurs in 2500 (out of 10000)
documents. What will be the tfidf entry for the term ‘data’ in a bag of words vector representation
for D.

Solution:

Using normalized term frequency tf(‘data′, D) = 20
250 . Idf is idf = ln(10000

2500). So tfidf =
2
25 × ln 4.

(b) You have the following three documents - D1, D2, D3:

D1: Natural language processing is becoming important since soon we will begin talking

to our computers.

D2: If computers understand natural language they will become much simpler to use.

D3: Speech recognition is the first step to build computers like us.

Answer the following with respect to the above set of 3 documents after text normalization (stop
word removal and lemmatization) has been done on all 3 documents.

i. What is the vocabulary V?

Solution:
There are multiple answers possible based on which words are treated as stop words and
whether some degree of chunking is done - for example one may decide to chunk ‘natural
language processing’ and/or ‘first step’. Here we take a rather simple approach. In the
context of the given documents we retain words that are likely to provide useful content
and discard the rest. We also we do not chunk.

V =(become, build, computer, first, important, language, like, natural,

processing, recognition, simple, speech, step, talk, understand, us, use)

ii. What are the number of bigrams and trigrams in D2?

Solution:
D2 after normalization looks as follows:

computer understand natural language become simple use

Bi-grams and trigrams are extracted by sliding windows of size 2 and 3 respectively over
the sentence. So, if n is the length of the sentence then No. of bigrams=(n − 1) where
n ≥ 2 and No. of trigrams=(n− 2) when n ≥ 3. So, we get 6 bigrams and 5 trigrams.

Of course, this answer will differ if your normalized document has more or less words.

iii. What will be the BoW document vector for document D3 if we are using a tf based document
vector?

Solution:
Document D3 after normalization:

speech recognition first step build computer like us

Bag-of-words vector with normalized tf:
1
8 (0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0)
All words occur only once in D3. So, if you use plain tf then the factor 1

8 will not be
present.

(c) Suppose you have the following two 4-dimensional word vectors for two words w1 and w2 respec-
tively:

w1 = (0.2, 0.1, 0.3, 0.4) and w2 = (0.3, 0, 0.2, 0.5)

What is the cosine similarity between w1 and w2? Are the words w1 and w2 similar or dissimilar?

Solution:

We can calculate cosine similarity from:

cosine(θ) =
〈w1,w2〉
‖ w1 ‖‖ w2 ‖

The expression is easier to calculate if we scale both vectors by multiplying by 10 - this does
not change the cosine. We get,

cosine(θ) =
6 + 6 + 20√

4 + 1 + 9 + 16
√

9 + 4 + 25
=

32√
30× 38

=
32

2
√

285

≈ 16

17

The value is very close to 1 so the words w1, w2 are very similar.

(d) In word2vec (skipgram) we compute the predicted probability distribution vector (ŷ) on the vocab-
ulary via a softmax over the output vector z i.e. ŷ = softmax(z). Given that the desired output
is y and the error function E is the cross entropy function E =

∑
i−yi ln(ŷi) derive the gradient

for the first step in the backpropagation.

Solution:

Let h be the output of the hidden layer and W the weight matrix between the hidden and
output layers. We can write the output vector z as: z = WTh + b, b is the bias. The output
vector is transformed by softmax to give the predicted output ŷ. So, ŷi = ezi∑|V|

j=1 e
zj

, i = 1..|V|.

The error E is cross entropy error. So, E = −
∑|V|
i=1 yi ln(ŷi). For the first step of backpropa-

Page 2

gation we will update weights Wij so we want the gradient ∂E
∂Wij

. Now, ∂E
∂Wij

= ∂E
∂zi

∂zi

∂Wij
.

Substitute for ŷi in E and differentiate w.r.t zi.

E = −
|voc|∑
k=1

yk ln(
ezk∑|V|
j=1 e

zj

)

= −(

|voc|∑
k=1

yk(zk − ln(

|V|∑
j=1

ezj)))

∂E
∂zi

= −yi +
ezi∑|V|
j=1 e

zj

= ŷi − yi

∂zi
∂Wij

= hi

∂E
∂Wij

= (ŷi − yi)
Thi

(e) Suppose you want to find vector space embeddings similar to word2vec (e.g. skipgram) for mor-
phologically rich languages1. How will you change the standard word2vec skipgram algorithm to
‘hopefully’ get improved embeddings?

For full credit give as much detail as possible. For example: What is your vocabulary? What is
the output? How is it scored to generate error? Etc.

Solution:

There is more than one way to do this. The simplest is to start with pre-trained word vectors
and imagine that this word is broken into a sequence of n-grams for small values of n (say 2 to
5) then repeat the skipgram training algorithm but now with central n-gram, context n-gram
pairs (similar to central word, context word pair). For a particular value of n the output vector
will now have a dimension equal to all possible n-grams (equivalent to V) over the alphabet
and the expected n-gram will be a 1-hot vector where only the context n-gram has entry 1 and
all others are 0. This process can be repeated for different values of n.

Another variant is to simultaneously feed a word vector and its n-grams to the hidden layer
where everything is summed. The rest is similar to skipgram. The sketch below shows how:

A third way is to create a vocabulary of morphemes (will be much smaller than number of
n-grams) in the language and then use the above scheme.

1In morphologically rich languages words have meaningful sub-structure. So, sub-word elements carry grammati-
cal, semantic or other information. While English is not morphologically rich an example word is: un-re-mark-able.

Page 3

(f) We used the EM (expectation maximization) algorithm for Naive-Bayes to get the parameters of
the distribution when the learning set did not have any labels. Can you think of another use for
the EM algorithm? Justify.

Solution:

EM is an iterative algorithm to compute hidden/unknown parameters θ when observable vari-
ables x can be thought to be generated by hidden variables y. If Pθ(y), Pθ(x) are the probability
distribution where θ is the set of parameters.

Many distributions in real life applications can be approximated very accurately by a mixture
of Gaussians (i.e. a linear combination of elementary Gaussians).

PΘ(x) =

m∑
i=1

αiPθi(x)

where Pθi are elementary Gaussians and αi are scalars called mixture coefficients. Parameter
vector is: Θ = (θ1, . . . , θm, α1, . . . , αm).

EM can be used to learn the parameters.

Another similar EM like algorithm is the iterative clustering algorithm where we start with
k-centroids for clusters and do:

Till convergence

E-step: assign points to nearest centroid.

M-step: recompute centroids (model parameters) for the least centroid

distance for points in the cluster.

[3,(3,(2,2),3),(3,1),5,5,3=30]

2. When you create a password on a website often there are constraints on the nature of the password.
Suppose the constraints on the password are:

a) Password should be at least 8 characters long but not more than 15 characters.

b) It must have at least one special character from !%@*.

c) It must have some letters and some digits - that is at least one letter and one digit.

d) At least one of the letters should be a capital letter.

e) It should not have characters not listed above.

Assume you had a function called match(regexp,str) that returns True or False depending on whether
the regular expression regexp matches the string str or not.

(a) Write an expression using match, egrep/any other regular expression language and boolean oper-
ations like OR, AND, NOT that will return True if the password satisfies the given constraints and
False otherwise.

[Hint: egrep has defined character classes: [[:alnum:]] - all alpha-numeric characters, [[:digit:]] -
all digits, [[:upper:]] - all upper case characters. Use the character classes to express your answer
concisely.]

Solution:

The easiest is to write regular expressions for each clause in the constraints and AND them.
Assume the password string is in variable passwd:

1. match(([[:alnum:]]|[!@\%*]){8,15}, passwd) - True if the password contains only
alphanumeric characters or the given special characters and is between 8 to 15 characters
long.

Page 4

2. match([[:upper:]], passwd) - True if password contains at least one upper case letter.

3. match([[:digit:]], passwd) - True if password contains at least one digit.

4. match([!@\%*], passwd) - True if password contains at least one special character.

5. NOT match([^A-Z a-z 0-9 !@\%*], passwd) - True if password does not contain any
character other than those mentioned.

An AND of the above five boolean expressions will check the constraints for the password.

(b) Can we write just a regular expression without using the boolean function match that will match
all valid passwords? Briefly, justify your answer.

Solution:

In principle it can be written but it will amount to an alternation of all the possible actual password
strings which are finite but very large. This is because it is not possible to enforce constraints like ‘at
least one each of capital letter or digit or special character should be present in the string’ without
enumerating all the possibilities.

[20,5=25]

3. (a) In the table below you are given the bag of words in 4 documents and the label of the document
(spam or not spam).

Document Bag of words Label
1 {price, weight, loss, vitamin, discount} spam
2 {vitamin, weight, discount, sad} spam
3 {loss, sad, sorry} not spam
4 {weight, foundation, price} not spam

i. Calculate the parameters of the Naive-Bayes model from the data given (use Laplace - that is
add 1 - smoothing for zeroes).

Solution:
The Naive Bayes parameters are: P (spam), P (non− spam) and P (wi|c) for each wi ∈ V
and c ∈ {spam, non-spam}. These probabilities have to be estimated from the learning
set L. We have |L| = 4 where 2 documents each are spam and non-spam. So, P (spam) =
P (non − spam) = 1

2 . To calculate class conditional term probabilities for each wi ∈ V
conditioned on the class label we use MLE estimates. We must handle the case when a
particular term does not occur at all in a particular class leading to a conditional probability
of 0 which will further lead to a 0 probability when we try to predict the label for a test
document that contains that term.
So, let us assume that we start with a uniform prior ε over V for each class. Then we count
occurrences for each term in V conditioned on the class and add it to the prior. The table
below shows this for the given data:

BoW index discount foundation loss price sad sorry vitamin weight
Prior ε ε ε ε ε ε ε ε
Spam 2 + ε ε 1 + ε 1 + ε 1 + ε ε 2 + ε 2 + ε
Non-spam ε 1 + ε 1 + ε 1 + ε 1 + ε 1 + ε ε 1 + ε

The class conditional probabilties in each case are obtained by dividing each value by the
sum of the values in each row for that class - that is:
9 + 8ε for spam and 6 + 8ε for non-spam. One can choose any value for ε. If ε is 1 we have
Laplace or add 1 smoothing. So, using ε = 1 the class conditional probabilities are:

Page 5

BoW index discount foundation loss price sad sorry vitamin weight

Spam 3
17

1
17

2
17

2
17

2
17

1
17

3
17

3
17

Non-spam 1
14

2
14

2
14

2
14

2
14

2
14

1
14

2
14

The Naive-Bayes method contains two parts. The first is the probability model for the pa-
rameters and the second is the independence assumption. The independence assumptions
are common to all Naive-Bayes models and they make the calculations computationally
tractable by reducing the number of parameters.
The calculation above used the multi-nomial model for probabilities. This involves actual
counts of words. An alternative is the Bernoulli model that only considers presence (1)
and absence (0) of the feature (i.e. the word) in the document. For the Bernoulli model
the prior probabilities for spam and non-spam are the same. But the class conditional
probabilities have to be calculated by P (w|c) = nw

Nc
where Nc is the number of documents

of class c and nw is the number documents with label c in which w occurs. Again we face
the problem of 0 probability if a particular word never occurs in documents of a particular
class (e.g. foundation in spam) but occurs in a test document. So, we have to adopt a
smoothing method. Using equal priors for presence and absence gives P (w|c) = nw+1

Nc+2
(actually assumes a β prior and then an MLE calculation with suitable choice of hyper-
parameters leads to this - but can be simply thought of as equiprobability). This gives the
following parameter values:

BoW index discount foundation loss price sad sorry vitamin weight

Spam 3
4

1
4

2
4

2
4

2
4

1
4

3
4

3
4

Non-spam 1
4

2
4

2
4

2
4

2
4

2
4

1
4

2
4

There is yet another way to calculate smoothed parameters. We can add a dummy docu-
ment for each term that does not appear in a class. The document is added to all the classes
so that the balance of probabilities remain approximately the same. This will ensure that
all class conditional parameters are non-zero and will work well when the Bernoulli model
is being used.
Note that all the different methods for parameter calculations are actually estimations
based on approximations. Often they are not even normalized since ultimately they will
be used only to decide a class label. However, in spite of the approximations involved the
Naive-Bayes decision is accurate surprisingly often. The actual parameter estimates may
be far from the real values but most of the time they are in the right direction and give
the correct answer.

ii. What are the probabilities for the labels spam and non spam for the document with the following
bag of words:

{weight, price, discount, foundation, loss}?

Solution:
Let d be the test document then:

P (spam|d) = 1
2 ×

3
17 ×

2
17 ×

3
17 ×

1
17 ×

2
17 = 36

175

P (non-spam|d) = 1
2 ×

2
14 ×

2
14 ×

1
14 ×

2
14 ×

2
14 = 16

145

The BoW vector (lexicographic order) is: (1, 1, 1, 1, 0, 0, 0, 1). Using the Bernoulli estimates
for parameters (we have to use presence (1) as well as absence (0)):

P (spam|d) = 1
2 ×

3
4 ×

1
4 ×

2
4 ×

2
4 ×

2
4 ×

3
4 ×

1
4 ×

3
4 = 216

2×48

P (non-spam|d) = 1
2 ×

1
4 ×

2
4 ×

2
4 ×

2
4 ×

2
4 ×

2
4 ×

3
4 ×

2
4 = 192

2×48

What is the final label for the document?

Page 6

Solution:
P (spam|d) ≈ 1

174

P (non− spam|d) = 1
74×28 ≈

1
16.14

So, the label is non-spam.
Using the Bernoulli parameters it is clear that the label is spam. So, the way in which pa-
rameters are modelled can lead to different results. Typically, the multi-nomial is preferred
since it accounts for the frequency of a word in a document while the Bernoulli ignores it.

(b) Let |V| be the size of the vocabulary, n be the size of the learning set, c be the number of labels, `
- be the average length of a document. What will be the complexity for calculating the parameters
of the Naive-Bayes model and for finding the label for a test document?

Solution:

For training: Compute c apriori class probabilities and c|V| conditional probabilities for each class
(filling in each row in the earlier table). To do this we have to make a pass over all the words in all
the documents (i.e. n` words). So, complexity is O(c|V|+ n`).

For testing: compute the probability for each class which requires O(c`) assuming the test document
is also of size `. Clearly, the all parameter values are available at testing time and accessible in
constant time.

[(17,4),4=25]

Page 7

