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Lecture XI
Euler-Cauchy Equation

1 Homogeneous Euler-Cauchy equation

If the ODE is of the form

az*y” + bxy” +cy = 0, (1)

where a, b and ¢ are constants; then (1) is called homogeneous Euler-Cauchy equation.
Two linearly independent solutions (i.e. basis) depend on the quadratic equation

am?® + (b—a)m +c = 0. (2)

Equation (2) is called characteristic equation for (1). The ODE (1) is singular at = 0.
Hence, we solve (1) for x # 0. We consider the case when = > 0.

Theorem 1. (i) If the roots of (2) are real and distinct, say my and mgy, then two
linearly independent (LI) solutions of (1) are 2™ and x™*. Thus, the general solution
to (1) is

y = Cix™ + Cox™2.
(i) If the roots of (2) are real and equal, say my = mg = m, then two LI solutions of
(1) are ™ and x™Inx. Thus, the general solution to (1) is

y=(C1+ Cylnz)z™.

(#ii) If the roots of (2) are complex conjugate, say my = a + i and my = o — if3,
then two real LI solutions of (1) are x®cos(B1Inx) and x*sin(BInx). Thus, the general
solution to (1) is

y = (C’l cos(Blnz) + Cysin(fIn x))

Proof: We have seen that the trial solution for a constant coefficient equation is e™*.
Now since power of ™ is reduced by 1 by a differentiation, let us take x™ as trial
solution for (1).

For convenience, (1) is written in the operator form L(y) = 0, where
L= aa:zcz; + ba:dci +ec.
We also sometimes write L as
L = ax*D?* + bzD + c,
where D = d/dx. Now
L(z™) = (am(m —1)+bm+ c):cm = p(m)z™, (3)

where p(m) = am? + (b — a)m + c¢. Thus, ™ is a solution of (1) if p(m) = 0.
(i) If p(m) = 0 has two distinct real roots my, ms, then both ™ and z™2 are solutions
of (1). Since, my # ma, they are also LI. Thus, the general solution to (1) is

y = Crax™ + Cox™.
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Example 1. Solve 2%y" — xy' — 3y =0

Solution: The characteristic equation is m? —2m — 3 = 0 = m = —1,3. The general
solution is y = C} /x + Cya®

(i) If p(m) = 0 has real equal roots m; = my = m, then 2™ is a solution of (1). To
find the other solution, note that if m is repeated root, then p(m) = p’(m) = 0. This
suggests differentiating (3) w.r.t. m. Since L consists of differentiation w.r.t. x only,

%(L(xm)) =L (a?nxm> = L(z™Inz).

Now
L(z™Inz) = (p/(m) + p(m)In x):z:m,

where ' represents the derivative. Since, m is a repeated root, the RHS is zero. Thus,
2™ Inz is also a solution to (1) and it is independent of ™. Hence, the general solution
to (1) is

y=(C1+ Cylnz)z™.

Example 2. Solve 2%y" — 32y + 4y =0

Solution: The characteristic equation is m? —4m +4 = 0 = m = 2,2. The general
solution is y = (C} + Cy Inx)x?.

(iii) If p(m) = 0 has complex conjugate roots, say m; = a+ i3 and mg = o — i3, then
two LI solutions are

Yl — x(a—l—iﬁ) — xaeiﬁlnz’ and Y'2 _ ‘rae—iﬂlnz‘

But these are complex valued. Note that if Y7, Y; are LI, then so are y; = (Y7 +Y5)/2
and yo = (Y7 — Y3)/2i. Hence, two real LI solutions of (1) are y; = z® cos(f1Inz) and
y2 = x®sin(fInz). Thus, the general solution to (1) is

y = (01 cos(fInx) + Cysin(f1n x))
Example 3. Solve 2%y" — 3zy + 5y =0

Solution: The characteristic equation is m? —4m +5 = 0 = m = 2 £ i. The general
solution is y = 22 (01 cos(Inz) + Cy sin(ln :z;))

Comment 1: The solution for < 0 can be obtained from that of x > 0 by replacing
x by —x everywhere.

Comment 2: Homogeneous Euler-Cauchy equation can be transformed to linear con-
stant coefficient homogeneous equation by changing the independent variable tot = In x
for x > 0.

Comment 3: This can be generalized to equations of the form
a(yz +0)*y" + b(yx + 8y + cy = 0.

In this case we consider (yx 4 §)™ as the trial solution.
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2 Nonhomogeneous Euler-Cauchy equation

If the ODE is of the form

any// + bZL’y// +ocy = f(g;% (4)
where a, b and ¢ are constants; then (4) is called nonhomogeneous Euler-Cauchy equa-
tion. We can use the method of variation of parameters as follows. First divide (4) by
ax? so that the coefficient of 3y becomes unity:

c

b
y// + = y// + -
ax ax

y =r(x), ()

where r(z) = 7(x)/ax?®. Now we already know two LI solutions y;, 9. of the homoge-
neous part. Hence, the particular solution to

(4) is given by

Thus, the general solution to (4) is

y(z) = Cryi(z) + Coya () + yp ().
Example 4.

Comment: In few cases, it can be solved also using method of undetermined coeffi-
cients. For this, we first convert it to constant coefficient liner ODE by ¢t = Inx. If the
the transformed RHS is of special form then the method of undetermined coefficients
is applicable.

Example 5. Consider

1
ny”—xy’—By:H, x> 0.
x
The characteristic equation is m? —2m —3 = 0 = m = —1,3. Hence y; = 1/z and
Yo = 3. Hence,
yp(x) = y1()u(z) + Yo (2)v(2)
where

b))

u(x) = —
( ) W<y17y2) W(y17y2)
Now W (y1,92) = 4z and |r(x) = Inz/2*|l Hence,
Inx (Inz)?
“(x)__/ﬂdx__ 8
Inx Inz 1

(@) = | 50 = 60 T G
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Hence,

(Inz)* Inx 1

wr) === " e 6de

Hence the general solution is y = c1y; + caya + yp, i.€.

A (Inz)? Inx
R e e i
y(@) x e 8z 16x

Note that last term of y, is absorbed with ;.

Aliter: Let us make the transformation t = Inz. Then the given transformed to

. t

y—2y—3y=te,

where "= d/dt. This is the same problem we have solved in lecture 9 using method of

undetermined coefficients. The solution is (see lecture 9)

t

.
y(t) = Cre~t + Che® — ‘%6(275 1),

which in terms of original x variable becomes

e s Inz
y(:v)—;%—C'gx 167(21nx+1),



