Lecture XI Euler-Cauchy Equation

1 Homogeneous Euler-Cauchy equation

If the ODE is of the form

$$
ax^2y'' + bxy'' + cy = 0,
$$
\n⁽¹⁾

where a, b and c are constants; then (1) is called homogeneous Euler-Cauchy equation. Two linearly independent solutions (i.e. basis) depend on the quadratic equation

$$
am^2 + (b - a)m + c = 0.
$$
 (2)

Equation (2) is called *characteristic equation* for (1). The ODE (1) is singular at $x = 0$. Hence, we solve (1) for $x \neq 0$. We consider the case when $x > 0$.

Theorem 1. (i) If the roots of (2) are real and distinct, say m_1 and m_2 , then two linearly independent (LI) solutions of (1) are x^{m_1} and x^{m_2} . Thus, the general solution to (1) is

$$
y = C_1 x^{m_1} + C_2 x^{m_2}.
$$

(ii) If the roots of (2) are real and equal, say $m_1 = m_2 = m$, then two LI solutions of (1) are x^m and $x^m \ln x$. Thus, the general solution to (1) is

$$
y = (C_1 + C_2 \ln x) x^m.
$$

(iii) If the roots of (2) are complex conjugate, say $m_1 = \alpha + i\beta$ and $m_2 = \alpha - i\beta$, then two real LI solutions of (1) are $x^{\alpha} \cos(\beta \ln x)$ and $x^{\alpha} \sin(\beta \ln x)$. Thus, the general solution to (1) is

$$
y = x^{\alpha} (C_1 \cos(\beta \ln x) + C_2 \sin(\beta \ln x)).
$$

Proof: We have seen that the trial solution for a constant coefficient equation is e^{mx} . Now since power of x^m is reduced by 1 by a differentiation, let us take x^m as trial solution for (1).

For convenience, (1) is written in the operator form $L(y) = 0$, where

$$
L \equiv ax^2 \frac{d^2}{dx^2} + bx \frac{d}{dx} + c.
$$

We also sometimes write L as

$$
L \equiv ax^2D^2 + bxD + c,
$$

where $D = d/dx$. Now

$$
L(x^{m}) = (am(m - 1) + bm + c)x^{m} = p(m)x^{m},
$$
\n(3)

where $p(m) = am^2 + (b - a)m + c$. Thus, x^m is a solution of (1) if $p(m) = 0$.

(i) If $p(m) = 0$ has two distinct real roots m_1, m_2 , then both x^{m_1} and x^{m_2} are solutions of (1). Since, $m_1 \neq m_2$, they are also LI. Thus, the general solution to (1) is

$$
y = C_1 x^{m_1} + C_2 x^{m_2}.
$$

S. Ghorai 2

Example 1. Solve $x^2y'' - xy' - 3y = 0$

Solution: The characteristic equation is $m^2 - 2m - 3 = 0 \Rightarrow m = -1, 3$. The general solution is $y = C_1/x + C_2x^3$

(ii) If $p(m) = 0$ has real equal roots $m_1 = m_2 = m$, then x^m is a solution of (1). To find the other solution, note that if m is repeated root, then $p(m) = p'(m) = 0$. This suggests differentiating (3) w.r.t. m. Since L consists of differentiation w.r.t. x only,

$$
\frac{\partial}{\partial m}\Big(L(x^m)\Big) = L\left(\frac{\partial}{\partial m}x^m\right) = L(x^m \ln x).
$$

Now

$$
L(x^m \ln x) = (p'(m) + p(m) \ln x) x^m,
$$

where $'$ represents the derivative. Since, m is a repeated root, the RHS is zero. Thus, $x^m \ln x$ is also a solution to (1) and it is independent of x^m . Hence, the general solution to (1) is

$$
y = (C_1 + C_2 \ln x) x^m.
$$

Example 2. Solve $x^2y'' - 3xy' + 4y = 0$

Solution: The characteristic equation is $m^2 - 4m + 4 = 0 \Rightarrow m = 2, 2$. The general solution is $y = (C_1 + C_2 \ln x)x^2$.

(iii) If $p(m) = 0$ has complex conjugate roots, say $m_1 = \alpha + i\beta$ and $m_2 = \alpha - i\beta$, then two LI solutions are

$$
Y_1 = x^{(\alpha + i\beta)} = x^{\alpha} e^{i\beta \ln x}
$$
, and $Y_2 = x^{\alpha} e^{-i\beta \ln x}$.

But these are complex valued. Note that if Y_1, Y_2 are LI, then so are $y_1 = (Y_1 + Y_2)/2$ and $y_2 = (Y_1 - Y_2)/2i$. Hence, two real LI solutions of (1) are $y_1 = x^{\alpha} \cos(\beta \ln x)$ and $y_2 = x^{\alpha} \sin(\beta \ln x)$. Thus, the general solution to (1) is

$$
y = x^{\alpha} (C_1 \cos(\beta \ln x) + C_2 \sin(\beta \ln x)).
$$

Example 3. Solve $x^2y'' - 3xy' + 5y = 0$

Solution: The characteristic equation is $m^2 - 4m + 5 = 0 \Rightarrow m = 2 \pm i$. The general solution is $y = x^2 (C_1 \cos(\ln x) + C_2 \sin(\ln x))$

Comment 1: The solution for $x < 0$ can be obtained from that of $x > 0$ by replacing x by $-x$ everywhere.

Comment 2: Homogeneous Euler-Cauchy equation can be transformed to linear constant coefficient homogeneous equation by changing the independent variable to $t = \ln x$ for $x > 0$.

Comment 3: This can be generalized to equations of the form

$$
a(\gamma x + \delta)^2 y'' + b(\gamma x + \delta)y' + cy = 0.
$$

In this case we consider $(\gamma x + \delta)^m$ as the trial solution.

S. Ghorai 3

2 Nonhomogeneous Euler-Cauchy equation

If the ODE is of the form

$$
ax^2y'' + bxy'' + cy = \tilde{r}(x),\tag{4}
$$

where a, b and c are constants; then (4) is called nonhomogeneous Euler-Cauchy equation. We can use the method of variation of parameters as follows. First divide (4) by ax^2 so that the coefficient of y'' becomes unity:

$$
y'' + \frac{b}{ax}y'' + \frac{c}{ax^2}y = r(x),\tag{5}
$$

yn(x)r(x)r(x)

where $r(x) = \tilde{r}(x)/ax^2$. Now we already know two LI solutions y_1, y_2 of the homogeneous part. Hence, the particular solution to

(4) is given by

$$
y_p(x) = -y_1(x) \int \frac{y_2(x)r(x)}{W(y_1, y_2)} dx + y_2(x) \int \frac{y_1(x)r(x)}{W(y_1, y_2)} dx.
$$

Thus, the general solution to (4) is

$$
y(x) = C_1 y_1(x) + C_2 y_2(x) + y_p(x).
$$

Example 4.

Comment: In few cases, it can be solved also using method of undetermined coefficients. For this, we first convert it to constant coefficient liner ODE by $t = \ln x$. If the the transformed RHS is of special form then the method of undetermined coefficients is applicable.

Example 5. Consider

$$
x^{2}y'' - xy' - 3y = \frac{\ln x}{x}, \qquad x > 0.
$$

The characteristic equation is $m^2 - 2m - 3 = 0 \Rightarrow m = -1, 3$. Hence $y_1 = 1/x$ and $y_2=x^3$. Hence,

$$
y_p(x) = y_1(x)u(x) + y_2(x)v(x)
$$

where

$$
u(x) = -\int \frac{y_2(x)r(x)}{W(y_1, y_2)} dx, \quad v(x) = \int \frac{y_1(x)r(x)}{W(y_1, y_2)} dx.
$$

= $4x$ and $\frac{r(x) - \ln x}{x^2}$. Hence

Now $W(y_1, y_2) = 4x$ and $|r(x) = \ln x/x^3|$. Hence,

$$
u(x) = -\int \frac{\ln x}{4x} dx = -\frac{(\ln x)^2}{8}
$$

$$
v(x) = \int \frac{\ln x}{4x^5} dx = -\frac{\ln x}{16x^4} - \frac{1}{64x^4}
$$

Hence,

$$
y_p(x) = -\frac{(\ln x)^2}{8x} - \frac{\ln x}{16x} - \frac{1}{64x}
$$

Hence the general solution is $y = c_1y_1 + c_2y_2 + y_p$, i.e.

$$
y(x) = \frac{A}{x} + Bx^3 - \frac{(\ln x)^2}{8x} - \frac{\ln x}{16x}.
$$

Note that last term of y_p is absorbed with y_1 .

Aliter: Let us make the transformation $t = \ln x$. Then the given transformed to

$$
\ddot{y} - 2\dot{y} - 3y = te^{-t},
$$

where $= d/dt$. This is the same problem we have solved in lecture 9 using method of undetermined coefficients. The solution is (see lecture 9)

$$
y(t) = C_1 e^{-t} + C_2 e^{3t} - \frac{te^{-t}}{16}(2t+1),
$$

which in terms of original x variable becomes

$$
y(x) = \frac{C_1}{x} + C_2 x^3 - \frac{\ln x}{16x} (2 \ln x + 1),
$$