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Lecture XI
Euler-Cauchy Equation

1 Homogeneous Euler-Cauchy equation

If the ODE is of the form
ax2y′′ + bxy′′ + cy = 0, (1)

where a, b and c are constants; then (1) is called homogeneous Euler-Cauchy equation.
Two linearly independent solutions (i.e. basis) depend on the quadratic equation

am2 + (b− a)m+ c = 0. (2)

Equation (2) is called characteristic equation for (1). The ODE (1) is singular at x = 0.
Hence, we solve (1) for x 6= 0. We consider the case when x > 0.

Theorem 1. (i) If the roots of (2) are real and distinct, say m1 and m2, then two
linearly independent (LI) solutions of (1) are xm1 and xm2. Thus, the general solution
to (1) is

y = C1x
m1 + C2x

m2 .

(ii) If the roots of (2) are real and equal, say m1 = m2 = m, then two LI solutions of
(1) are xm and xm lnx. Thus, the general solution to (1) is

y = (C1 + C2 lnx)xm.

(iii) If the roots of (2) are complex conjugate, say m1 = α + iβ and m2 = α − iβ,
then two real LI solutions of (1) are xα cos(β lnx) and xα sin(β lnx). Thus, the general
solution to (1) is

y = xα
(
C1 cos(β lnx) + C2 sin(β lnx)

)
.

Proof: We have seen that the trial solution for a constant coefficient equation is emx.
Now since power of xm is reduced by 1 by a differentiation, let us take xm as trial
solution for (1).

For convenience, (1) is written in the operator form L(y) = 0, where

L ≡ ax2 d
2

dx2
+ bx

d

dx
+ c.

We also sometimes write L as

L ≡ ax2D2 + bxD + c,

where D = d/dx. Now

L(xm) =
(
am(m− 1) + bm+ c

)
xm = p(m)xm, (3)

where p(m) = am2 + (b− a)m+ c. Thus, xm is a solution of (1) if p(m) = 0.

(i) If p(m) = 0 has two distinct real roots m1,m2, then both xm1 and xm2 are solutions
of (1). Since, m1 6= m2, they are also LI. Thus, the general solution to (1) is

y = C1x
m1 + C2x

m2 .
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Example 1. Solve x2y′′ − xy′ − 3y = 0

Solution: The characteristic equation is m2 − 2m− 3 = 0⇒ m = −1, 3. The general
solution is y = C1/x+ C2x

3

(ii) If p(m) = 0 has real equal roots m1 = m2 = m, then xm is a solution of (1). To
find the other solution, note that if m is repeated root, then p(m) = p′(m) = 0. This
suggests differentiating (3) w.r.t. m. Since L consists of differentiation w.r.t. x only,

∂

∂m

(
L(xm)

)
= L

(
∂

∂m
xm
)

= L(xm lnx).

Now
L(xm lnx) =

(
p′(m) + p(m) lnx

)
xm,

where ′ represents the derivative. Since, m is a repeated root, the RHS is zero. Thus,
xm lnx is also a solution to (1) and it is independent of xm. Hence, the general solution
to (1) is

y = (C1 + C2 lnx)xm.

Example 2. Solve x2y′′ − 3xy′ + 4y = 0

Solution: The characteristic equation is m2 − 4m + 4 = 0 ⇒ m = 2, 2. The general
solution is y = (C1 + C2 lnx)x2.

(iii) If p(m) = 0 has complex conjugate roots, say m1 = α+ iβ and m2 = α− iβ, then
two LI solutions are

Y1 = x(α+iβ) = xαeiβ lnx, and Y2 = xαe−iβ lnx.

But these are complex valued. Note that if Y1, Y2 are LI, then so are y1 = (Y1 + Y2)/2
and y2 = (Y1 − Y2)/2i. Hence, two real LI solutions of (1) are y1 = xα cos(β lnx) and
y2 = xα sin(β lnx). Thus, the general solution to (1) is

y = xα
(
C1 cos(β lnx) + C2 sin(β lnx)

)
.

Example 3. Solve x2y′′ − 3xy′ + 5y = 0

Solution: The characteristic equation is m2 − 4m+ 5 = 0⇒ m = 2± i. The general
solution is y = x2

(
C1 cos(lnx) + C2 sin(lnx)

)
Comment 1: The solution for x < 0 can be obtained from that of x > 0 by replacing
x by −x everywhere.

Comment 2: Homogeneous Euler-Cauchy equation can be transformed to linear con-
stant coefficient homogeneous equation by changing the independent variable to t = lnx
for x > 0.

Comment 3: This can be generalized to equations of the form

a(γx+ δ)2y′′ + b(γx+ δ)y′ + cy = 0.

In this case we consider (γx+ δ)m as the trial solution.
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2 Nonhomogeneous Euler-Cauchy equation

If the ODE is of the form

ax2y′′ + bxy′′ + cy = r̃(x), (4)

where a, b and c are constants; then (4) is called nonhomogeneous Euler-Cauchy equa-
tion. We can use the method of variation of parameters as follows. First divide (4) by
ax2 so that the coefficient of y′′ becomes unity:

y′′ +
b

ax
y′′ +

c

ax2
y = r(x), (5)

where r(x) = r̃(x)/ax2. Now we already know two LI solutions y1, y2 of the homoge-
neous part. Hence, the particular solution to

(4) is given by

yp(x) = −y1(x)
∫ y2(x)r(x)

W (y1, y2)
dx+ y2(x)

∫ y1(x)r(x)

W (y1, y2)
dx.

Thus, the general solution to (4) is

y(x) = C1y1(x) + C2y2(x) + yp(x).

Example 4.

Comment: In few cases, it can be solved also using method of undetermined coeffi-
cients. For this, we first convert it to constant coefficient liner ODE by t = lnx. If the
the transformed RHS is of special form then the method of undetermined coefficients
is applicable.

Example 5. Consider

x2y′′ − xy′ − 3y =
lnx

x
, x > 0.

The characteristic equation is m2 − 2m − 3 = 0 ⇒ m = −1, 3. Hence y1 = 1/x and
y2 = x3. Hence,

yp(x) = y1(x)u(x) + y2(x)v(x)

where

u(x) = −
∫ y2(x)r(x)

W (y1, y2)
dx, v(x) =

∫ y1(x)r(x)

W (y1, y2)
dx.

Now W (y1, y2) = 4x and r(x) = ln x/x3 ! Hence,

u(x) = −
∫ lnx

4x
dx = −(lnx)2

8

v(x) =
∫ lnx

4x5
dx = − lnx

16x4
− 1

64x4
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Hence,

yp(x) = −(lnx)2

8x
− lnx

16x
− 1

64x

Hence the general solution is y = c1y1 + c2y2 + yp, i.e.

y(x) =
A

x
+Bx3 − (lnx)2

8x
− lnx

16x
.

Note that last term of yp is absorbed with y1.

Aliter: Let us make the transformation t = lnx. Then the given transformed to

ÿ − 2ẏ − 3y = te−t,

where ˙ = d/dt. This is the same problem we have solved in lecture 9 using method of
undetermined coefficients. The solution is (see lecture 9)

y(t) = C1e
−t + C2e

3t − te−t

16
(2t+ 1),

which in terms of original x variable becomes

y(x) =
C1

x
+ C2x

3 − lnx

16x
(2 lnx+ 1),


