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Lecture XII
Power Series Solutions: Ordinary points

1 Analytic function

Definition 1. Let f be a function defined on an interval I. We say f is analytic at
point x0 ∈ I if f can be expanded in a power series about x0 which has a positive radius
of convergence.

Thus f is analytic at x = x0 if f has the representation

f(x) =
∞∑

n=0

cn(x− x0)
n. (1)

Here cn are constant and (1) converges for |x − x0| < R where R > 0. Radius of
convergence R can be found from ratio test/root test.

If f has power series representation (1), then its derivative exits in |x−x0| < R. These
derivatives are obtained by differentiating the RHS of (1) term by term. Thus,

f ′(x) =
∞∑

n=1

ncn(x− x0)
n−1 ≡

∞∑
n=0

(n + 1)cn+1(x− x0)
n, (2)

and

f ′′(x) =
∞∑

n=2

n(n− 1)cn(x− x0)
n−2 ≡

∞∑
n=0

(n + 2)(n + 1)cn+2(x− x0)
n. (3)

2 Ordinary points

Consider a linear 2nd order homogeneous ODE of the form

a0(x)y′′ + a1(x)y′ + a2(x)y = 0,

where a0, a1 and a2 are continuous in an interval I. The points where a0(x) = 0 are
called singular points. If a0(x) 6= 0,∀x ∈ I, then the above ODE can be written as (by
dividing by a0(x))

y′′ + p(x)y′ + q(x)y = 0. (4)

Definition 2. A point x0 ∈ I is called an ordinary point for (4) if p(x) and q(x) are
analytic at x = x0.

Theorem 1. Let x0 be an ordinary point for (4). Then there exists a unique solution
y = y(x) of (4) which is also analytic at x0 and satisfies y(x0) = K0, y

′(x0) = K1

(K0, K1 are arbitrary constants). Further, if p and q have convergent power series
expansion in |x − x0| < R, (R > 0), then the power series expansion of y is also
convergent in |x− x0| < R.

Example 1. Find power series solution around x0 = 0 for

(1 + x2)y′′ + 2xy′ − 2y = 0.
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Solution: (This can be solved by reduction of order technique since Y1 = x is a

solution. The other solution is given by

Y2(x) = Y1(x)
∫ 1

x2
e−
∫

2x/(1+x2) dxdx = x
∫ (

1

x2
− 1

1 + x2

)
dx = −(1 + x tan−1 x)

Thus, two LI solutions are Y1 = x and Y2 = 1 + x tan−1 x)

Here p(x) = 2x/(1 + x2) and q(x) = −2/(1 + x2) are analytic at x = 0 with common
radius of convergence R = 1. Let

y(x) =
∞∑

n=0

cnx
n.

Now using (3), we get

(1 + x2)y′′(x) =
∞∑

n=0

(n + 2)(n + 1)cn+2x
n +

∞∑
n=2

n(n− 1)cnx
n.

Note that the summation in the last term can be taken from n = 0 since the contribu-
tions due to n = 0 and n = 1 vanish. Thus

(1 + x2)y′′(x) =
∞∑

n=0

[
(n + 2)(n + 1)cn+2 + n(n− 1)cn

]
xn.

Similarly

2xy′(x) =
∞∑

n=0

2ncnx
n.

Substuting into the given ODE we find

∞∑
n=0

[
(n + 2)(n + 1)cn+2 + n(n− 1)cn + 2ncn − 2cn

]
xn = 0.

Now all the coefficients of powers of x must be zero. Hence,

(n+2)(n+1)cn+2 = −
(
n(n−1)cn+2ncn−2cn

)
⇒ cn+2 = −n− 1

n + 1
cn, n = 0, 1, 2, · · · .

This enables us to find cn in terms c0 or c1. For n = 0 get

c2 = c0,

and for n = 1 we obtain
c3 = 0.

Similarly, letting n = 2, 3, 4, · · · we find that cn = 0, n = 5, 7, 9, · · · , and

c4 = −1

3
c2 = −1

3
c0, c6 = −3

5
c4 =

1

5
c0, · · · .
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By induction we find that for m = 1, 2, 3, · · ·,

c2m = (−1)m−1 1

2m− 1
c0,

and
c2m+1 = 0.

Now we write
y(x) = c0y1(x) + c1y2(x),

where

y1(x) = 1 + x2 − x4

3
+

x6

5
− · · ·

OR

y1(x) = 1 + x
∞∑

m=0

(−1)m 1

2m + 1
x2m+1

and
y2(x) = x.

Here c0 and c1 are arbitrary. Thus, y1 is a solution corresponding to c0 = 1, c1 = 0
and y2 is a solution corresponding to c0 = 0, c1 = 1. They form a basis of solutions.
Obviously y2 being polynomial has radius of convergence R = ∞ and y1 has R = 1.
Thus, the power series solution is valid at least in |x| < 1. We can identify y1 with
1 + x tan−1 x obtained earlier.

Comment: In the above problem, it was possible to write the series (after substitution
of y =

∑∞
n=0 cnx

n) in the form
∞∑

n=0

bnx
n = 0,

which ultimately gives bn = 0, n = 0, 1, 2, · · · . Sometimes, we need to leave few terms
outside of the summation OR define few new terms inside the summation. For example,
consider

(1 + x2)y′′ + x2y = 0.

If we substitute y =
∑∞

n=0 cnx
n, then we find

∞∑
n=0

(n + 2)(n + 1)cn+2x
n +

∞∑
n=0

n(n− 1)cnx
n +

∞∑
n=2

cn−2x
n = 0. (5)

This can be arranged in two different ways:
(A) Here we write (5) as

2c2 + 3 · 2c3x +
∞∑

n=2

[
(n + 2)(n + 1)cn+2 + n(n− 1)cn + cn−2

]
xn = 0

Hence c2 = 0, c3 = 0, (n + 2)(n + 1)cn+2 + n(n− 1)cn + cn−2 = 0, n ≥ 2
(B) Here we write (5) as

∞∑
n=0

[
(n + 2)(n + 1)cn+2 + n(n− 1)cn + cn−2

]
xn = 0, c−2 = c−1 = 0.

Thus, (n + 2)(n + 1)cn+2 + n(n− 1)cn + cn−2 = 0, n ≥ 0, c−2 = c−1 = 0


