S. Ghorai

Lecture XII

Power Series Solutions: Ordinary points

1 Analytic function

Definition 1. Let f be a function defined on an interval \mathcal{I} . We say f is analytic at point $x_0 \in \mathcal{I}$ if f can be expanded in a power series about x_0 which has a positive radius of convergence.

Thus f is analytic at $x = x_0$ if f has the representation

$$f(x) = \sum_{n=0}^{\infty} c_n (x - x_0)^n.$$
 (1)

Here c_n are constant and (1) converges for $|x - x_0| < R$ where R > 0. Radius of convergence R can be found from ratio test/root test.

If f has power series representation (1), then its derivative exits in $|x-x_0| < R$. These derivatives are obtained by differentiating the RHS of (1) term by term. Thus,

$$f'(x) = \sum_{n=1}^{\infty} nc_n (x - x_0)^{n-1} \equiv \sum_{n=0}^{\infty} (n+1)c_{n+1} (x - x_0)^n,$$
 (2)

and

$$f''(x) = \sum_{n=2}^{\infty} n(n-1)c_n(x-x_0)^{n-2} \equiv \sum_{n=0}^{\infty} (n+2)(n+1)c_{n+2}(x-x_0)^n.$$
 (3)

2 Ordinary points

Consider a linear 2nd order homogeneous ODE of the form

$$a_0(x)y'' + a_1(x)y' + a_2(x)y = 0,$$

where a_0, a_1 and a_2 are continuous in an interval \mathcal{I} . The points where $a_0(x) = 0$ are called *singular points*. If $a_0(x) \neq 0, \forall x \in \mathcal{I}$, then the above ODE can be written as (by dividing by $a_0(x)$)

$$y'' + p(x)y' + q(x)y = 0.$$
 (4)

Definition 2. A point $x_0 \in \mathcal{I}$ is called an ordinary point for (4) if p(x) and q(x) are analytic at $x = x_0$.

Theorem 1. Let x_0 be an ordinary point for (4). Then there exists a unique solution y = y(x) of (4) which is also analytic at x_0 and satisfies $y(x_0) = K_0, y'(x_0) = K_1$ (K_0, K_1 are arbitrary constants). Further, if p and q have convergent power series expansion in $|x - x_0| < R$, (R > 0), then the power series expansion of q is also convergent in $|x - x_0| < R$.

Example 1. Find power series solution around $x_0 = 0$ for

$$(1+x^2)y'' + 2xy' - 2y = 0.$$

S. Ghorai 2

Solution: (This can be solved by reduction of order technique since $Y_1 = x$ is a solution. The other solution is given by

$$Y_2(x) = Y_1(x) \int \frac{1}{x^2} e^{-\int 2x/(1+x^2) dx} dx = x \int \left(\frac{1}{x^2} - \frac{1}{1+x^2}\right) dx = -(1+x\tan^{-1}x)$$

Thus, two LI solutions are $Y_1 = x$ and $Y_2 = 1 + x \tan^{-1} x$

Here $p(x) = 2x/(1+x^2)$ and $q(x) = -2/(1+x^2)$ are analytic at x = 0 with common radius of convergence R = 1. Let

$$y(x) = \sum_{n=0}^{\infty} c_n x^n.$$

Now using (3), we get

$$(1+x^2)y''(x) = \sum_{n=0}^{\infty} (n+2)(n+1)c_{n+2}x^n + \sum_{n=2}^{\infty} n(n-1)c_nx^n.$$

Note that the summation in the last term can be taken from n=0 since the contributions due to n=0 and n=1 vanish. Thus

$$(1+x^2)y''(x) = \sum_{n=0}^{\infty} \left[(n+2)(n+1)c_{n+2} + n(n-1)c_n \right] x^n.$$

Similarly

$$2xy'(x) = \sum_{n=0}^{\infty} 2nc_n x^n.$$

Substuting into the given ODE we find

$$\sum_{n=0}^{\infty} \left[(n+2)(n+1)c_{n+2} + n(n-1)c_n + 2nc_n - 2c_n \right] x^n = 0.$$

Now all the coefficients of powers of x must be zero. Hence,

$$(n+2)(n+1)c_{n+2} = -\left(n(n-1)c_n + 2nc_n - 2c_n\right) \Rightarrow c_{n+2} = -\frac{n-1}{n+1}c_n, \qquad n = 0, 1, 2, \dots$$

This enables us to find c_n in terms c_0 or c_1 . For n=0 get

$$c_2 = c_0$$
,

and for n = 1 we obtain

$$c_3=0.$$

Similarly, letting $n = 2, 3, 4, \dots$ we find that $c_n = 0, n = 5, 7, 9, \dots$, and

$$c_4 = -\frac{1}{3}c_2 = -\frac{1}{3}c_0, \quad c_6 = -\frac{3}{5}c_4 = \frac{1}{5}c_0, \cdots$$

S. Ghorai

By induction we find that for $m = 1, 2, 3, \dots$,

$$c_{2m} = (-1)^{m-1} \frac{1}{2m-1} c_0,$$

and

$$c_{2m+1} = 0.$$

Now we write

$$y(x) = c_0 y_1(x) + c_1 y_2(x),$$

where

$$y_1(x) = 1 + x^2 - \frac{x^4}{3} + \frac{x^6}{5} - \dots$$

OR

$$y_1(x) = 1 + x \sum_{m=0}^{\infty} (-1)^m \frac{1}{2m+1} x^{2m+1}$$

and

$$y_2(x) = x.$$

Here c_0 and c_1 are arbitrary. Thus, y_1 is a solution corresponding to $c_0 = 1, c_1 = 0$ and y_2 is a solution corresponding to $c_0 = 0, c_1 = 1$. They form a basis of solutions. Obviously y_2 being polynomial has radius of convergence $R = \infty$ and y_1 has R = 1. Thus, the power series solution is valid at least in |x| < 1. We can identify y_1 with $1 + x \tan^{-1} x$ obtained earlier.

<u>Comment:</u> In the above problem, it was possible to write the series (after substitution of $y = \sum_{n=0}^{\infty} c_n x^n$) in the form

$$\sum_{n=0}^{\infty} b_n x^n = 0,$$

which ultimately gives $b_n = 0$, $n = 0, 1, 2, \cdots$. Sometimes, we need to leave few terms outside of the summation OR define few new terms inside the summation. For example, consider

$$(1+x^2)y'' + x^2y = 0.$$

If we substitute $y = \sum_{n=0}^{\infty} c_n x^n$, then we find

$$\sum_{n=0}^{\infty} (n+2)(n+1)c_{n+2}x^n + \sum_{n=0}^{\infty} n(n-1)c_nx^n + \sum_{n=2}^{\infty} c_{n-2}x^n = 0.$$
 (5)

This can be arranged in two different ways:

(A) Here we write (5) as

$$2c_2 + 3 \cdot 2c_3x + \sum_{n=2}^{\infty} \left[(n+2)(n+1)c_{n+2} + n(n-1)c_n + c_{n-2} \right] x^n = 0$$

Hence $c_2 = 0$, $c_3 = 0$, $(n+2)(n+1)c_{n+2} + n(n-1)c_n + c_{n-2} = 0$, $n \ge 2$ (B) Here we write (5) as

$$\sum_{n=0}^{\infty} \left[(n+2)(n+1)c_{n+2} + n(n-1)c_n + c_{n-2} \right] x^n = 0, \qquad c_{-2} = c_{-1} = 0.$$

Thus,
$$(n+2)(n+1)c_{n+2} + n(n-1)c_n + c_{n-2} = 0$$
, $n \ge 0, c_{-2} = c_{-1} = 0$