S. Ghorai 1

Lecture XIII

Legendre Equation, Legendre Polynomial

1 Legendre equation

This equation arises in many problems in physics, specially in boundary value problems
in spheres:

(1—2%)y" — 22y + ala+ 1)y =0, (1)
where « is a constant.

We write this equation as
y' + o)y +q(z)y =0,
where ) .
po) = oy and g() = 0D
Clearly p(x) and ¢g(x) are analytic at the origin and have radius of convergence R = 1.
Hence z = 0 is an ordinary point for (1). Assume

y(x) = Z Cpx™.

n=0

Proceeding as in the case of example 1 in lecture note XII, we find

(a+n+1)(a—n)
(n+2)(n+1)

Taking n = 0,1,2 and 3 we find

Cny2 = — Cn, TL:O,].,2,"'

o, lata - (at2=1 - (e+3(a+Dala=2)
1.2 b 1-2.3 L ™ 1.2.3.4 05
and
o = (a+4)(a+2)(a— 1)(@—3)61.

1-2-3-4-5
By induction, we can prove that for m =1,2,3,---

ma+2m—1)(a+2m—3)---(a+Da(la—2)--- (a — 2m + 2)

eam = (=1) (2m)!

Co

mla+2m)(a+2m—2)---(a+2)(a—1)(a—3)--- (o« —2m+1)
(2m+1)!

Com+1 = (—1) Cy.

Thus, we can write
y(z) = coyr(z) + crya (),

= a+2m—1)(a+2m—-3)--- (a+ Dafa—2)--- (o« —2m+2) ,

nie) =143 (-1t ! o
2)
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and

= a+2m)(a+2m—=2) - (a+2)(a—1)(a—=3) - (a—2m+1) , 4
yg(x):x+n;(—1)m( + 2m){a + ) ((2:11(1)! (@ =3)--( +1) omit

(3)
Taking ¢ = 1,¢4 = 0 and ¢y = 0,¢; = 0, we find that y; and ys are solutions of
Legendre equation. Also, these are LI, since their Wronskian is nonzero at x = 0. The
series expansion for y; and y, may terminate (in that case the corresponding solution
has R = 00), otherwise they have radius of convergence R = 1.

2 Legendre polynomial

We note that if o in (1) is a nonnegative integer, then either y; given in (2) or y given
in (3) terminates. Thus, y; terminates when a@ = 2m (m = 0,1,2,---) is nonnegative
even integer:
Y1 (:L') = 1 (
yi(z) = 1— 322, (
yi(z) = 1—102% + 2z, (a=4).

Note that ys does not terminate when « is a nonnegative even integer.

Similarly, yo terminates (but y; does not terminate) when « = 2m+1 (m =0,1,2,--+)
is nonnegative odd integer:

ya(x) = =, (a=1),
() = x— §x3, (a=5),
ypa(r) = x— Fa?+ 2, (a=5).

Notice that the polynomial solution of
(1—2?)y" — 2y +n(n+ 1)y =0, (4)

where n is nonnegative integer, is polynomial of degree n. Equation (4) is the same as
(1) with n replacing .

Definition 1. The polynomial solution, denoted by P,(x), of degree n of (4) which
satisfies P,(1) =1 is called the Legendre polynomial of degree n.

Let ¢ be a polynomial of degree n defined by

U@) = (1) )

Then ) is a solution of (4). To prove it, we proceed as follows: Assume u(x) = (x'—1)".
Then
(2% — D)ut) = 2nzu. (6)

Now we take (n + 1)-th derivative of both sides of (6):

((mZ - 1)u(1))(n+1) = 2n(zu) ™). (7)
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Now we use Leibniz rule for the derivative of product two functions f and g:

m

(-9 =3 (Z‘) F¥gm D),

k=0
which can be proved easily by induction.
Thus from (7) we get

(22 — Du™? 4 22(n 4+ D)uY + (n 4+ D)nu'™ = 2n (xu("H) +(n+ 1)u(”)).
Simplifying this and noting that ¢ = u(™, we get
(1 — 2" — 229 +n(n+ 1) = 0.
Thus, 1 satisfies (4). Note that we can write
(n)
v@) = (@+1)"@=10") " = @+ 1)+ (@ = 1)s(a),

where s(z) is a polynomial. Thus, ¥(1) = 2"n!. Hence,

1 1odr, .,
o V) = Gt g 8 D" (8)

P.(x) =

3 Properties of Legendre polynomials

a. Generating function: The function G(t,x) given by
1
V1 —2xt+t?

is called the generating function of the Legendre polynomials. It can be shown
that for small ¢

G(t,x) =

\/1—2xt+t2 Z

b. Orthogonality: The following property holds for Legendre polynomials:

1 0, if m#n
/_ P(x)P,(x)dx = { 2 :

1 27’L——|—1, 1fm:n.

c. Fourier-Legendre series: By using the orthogonality of Legendre polynomials,
any piecewise continuous function in —1 < x < 1 can be expresses in terms of
Legendre polynomials:

where

Now
f(x), where f is continuous

, where f is discontinuous



