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Lecture XIV

Frobenius series: Regular singular points

1 Singular points

Consider the second order linear homogeneous equation
ap()y" + a1(x)y’ + ax(x)y = 0, rel (1)

Suppose that ag,a; and ay are analytic at zg € Z. If ag(xg) = 0, then x, is a singular
point for (1).

Definition 1. A point xy € T is a regular singular point for (1) if (1) can be written
as

bo(x)(x — w0)*y" + bi(2)(z — w0)y' + ba(w)y = 0, (2)

where by(xg) # 0 and by, by, by are analytic at xg.

Comment 1: Since by(xg) # 0, we get an equivalent definition of regular singular
point by dividing (2) by by(x). Thus, a point xy € Z is a regular singular point for (1)
if (1) can be written as

(x — x0)*y" + (x — zo)p(2)y + q(x)y =0, (3)

where p and ¢ are analytic at xg.

Comment 2: Any singular point of (1) which is not regular is called irregular singular
point.

Example 1. Consider
3y — (1 —cosx)y' +xy =0

The singular point xo = 0 s reqular.
Example 2. Consider
23z — 1% + (sina)y + (z — 1)y =0
The singular point xq = 0 is reqular whereas xo = 1 is irreqular.
Example 3. FEuler-Cauchy equation:
az?y” + bay' + cy = 0,
where a, b, c are constants. Here xqg = 0 1s a reqular singular point.

For simplicity, we consider a second order linear ODE with a regular singular point
at xg = 0. If xg # 0, it is easy to convert the given ODE to an equivalent ODE
with regular singular point at zy = 0. For this, we substitute t = x — xy and let
z(t) = y(xo + t). Then (3) becomes

22 +tp(t): + G(t)z = 0,
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where "= d/dt. Thus, we consider following second order homogeneous linear ODE

2?y" + xp(x)y + q(x)y =0, (4)

where p, ¢ are analytic at the origin.

Ordinary point vs. regular singular point: This can explained by taking two ex-
amples. Consider

y' +y=0,
which has 0 as the ordinary point. Note that the general solution is y = c¢;cosx +
cosinz. At the ordinary point zy = 0, we can find unique ¢y, ¢y for a given Ky, K7 such
that y(0) = Ko, y'(0) = K;. Thus, unique solution exists for initial conditions specified
at the ordinary point.

Now consider the Euler-Cauchy equation

2y — 2y + 2y = 0,

for which 2y = 0 is a regular singular point. The general solution is y = ¢,z + cpa?.

Now it is not possible to find unique values of ¢y, cy for a given Ky, K; such that
y(0) = Ko, y'(0) = K;. Note that solution does not exist for Ky # 0 since y(0) = 0.

2 Frobenius method

We would like to find two linearly independent solutions of (4) so that these form a
basis solution for x # 0. We find the basis solution for x > 0. For x < 0, we substitute
t = —x and carry out similar procedure for ¢ > 0.

If p and ¢ in (4) are constants, then a solution of (4) is of the form z". But since p and
q are power series, we assume that a solution of (4) can be represented by an extended
power series

y=a") ap", (5)

n=0
which is a product of " and a power series. We also assume that ag # 0. We formally
substitute (5) into (4) and find r and ay, ag, - - - in terms of ag and . Once we find (5),

we next check the convergence of the series. If it converges, then (5) becomes solution
for (4).
Now from (5), we find

2y () => (n+r)(n+r—1Daz""", zy'(z)=> (n+r)az""".
n=0 n=0

Since p and ¢ are analytic, we write

- Ez:pnxna Q<w):: ZE:ann
n=0 n=0

Substituting into (4), we get

S0 - e ($) (S0 ) 1 (52 (S o

n=0
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OR
x" Z l(r +n)(r+n-—1)a, + Z ((r + k)pn—k + an)ak] " =0.
n=0 k=0
Since x > 0, this becomes

Z[r—i—n r+n—1an+2(r+k)pnk+an)ak]x”:(), (6)
k=0

Thus, we must have

n—1
[(r_’_n)(r_’_n_1)+(n+r)p0+q0]an+z[(r+k)pn—k+qn—k]ak = 07 n = 07 17 25 U (7)
k=0
Now (7) gives a, in terms of ag,ay,--,a,_1 and r.
For n =0, we find
r(r—1) +por +q =0, (8)

since ag # 0. Equation (8) is called indicial equation for (4). The form of the linearly
independent solutions of (4) depends on the roots of (8).

Let p(r) = r(r — 1) + por + qo. Then for n =1,2,---, we find

p(r+n)a, + b, =0,

where )
bn = Z [(7” + k)pnfk + qnfk]ak
k=0
Notice that b, is a linear combination of ag, ay, - -, a,_1. Thus, we can find a,, uniquely

in terms of 7 and ag if p(r +n) # 0. If p(r +n) = 0, then it is possible to find value of
a, in certain cases.

Let 1,79 be the roots of the indicial equation (8). We assume that the roots are real
and . > ro. For ry, clearly p(ry +n) # 0 for n = 1,2,---. Thus, we can determine
ai, as, as, - - - corresponding to r1. Clearly, one Frobenius series (extended power series)
solution y; corresponding to the larger root r; always exists. Suppose ag = 1, then

yi(x) =™ (1 + ij:l an(r1)$">. (9)

Now for r = ry, three cases may appear. These are as follows:

A. r{ —ry is not a nonnegative integer: Then r, + n # r; for any integer n > 1
and as a result p(ro +n) # 0 for any n > 1.Thus, we can determine ay, aq, ag, - - -
corresponding to ry. Clearly, another Frobenius series solution g, corresponding
to the smaller root exists. Suppose ag = 1, then

yo(z) = 2™ (1 + i an(rg)l'”). (10)

B. r; = ry, double root: Clearly a second extended power series (Frobenius series)
solution does not exist.
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C. 11 —rg =m, m > 1 is a positive integer: In this case p(ry + m) = p(r;) = 0.
Thus, we can find a4, ao, - - -, a,,—1. But for a,,, we have

p(re +m)ay, = —by,.
Since p(r) = (r —r1)(r —r2), we have
pir+m)=(r+m—r)(r+m—ry)=(r—ry)(r+m—ry).
Clearly two cases may arise here:

C.i b, has a factor r — ro, i.e. by, (r2) = 0. In this case, we cancel factor r — ry
from both sides and find a,,(r2) as a finite number. Then we can continue
calculating remaining coefficients @, 1, @y yo, - - . Hence, a second Frobenius
series solution exists.

C.ii On the other hand, if b,,(r3) # 0, then it is not possible to continue the
calculations of a,, for n > m. Hence, a second Frobenius series solution does
not exist.

To find the form of the solution in the case of B and C described above, we use the
reduction of order technique. We know that y;(x) (corresponding the larger root)
always exists. Let yo(z) = v(x)y;(x). Then

’U/ _ %e—fp(a:)/xdx
Y1
_ 1 p—Polna—pro—-
22 (14 ay(r)a + as(r)a? + )
— 1 o P1T—
x2r1+po (1 +ay(ry)x + as(r)a? + - -)2
1

= 9@,

where g(x) is analytic at « = 0 and ¢(0) = 1. Since g(z) is analytic at x = 0 with
g(0) = 1, we must have g(z) = 1+ >°°, g,a™. Since 11,79 are roots of (8), we must
have

7“1+7“2:1—p0:>2r1+p0:m—|—1.

Hence,
1 m— 'm
v = +£+...+g 1+L+gm+1+"'7
amtt o gm x? x
OR
@)=""1 I = LA R + (11)
-m —m+1 —1 g i1
Thus,
—m —m—+1 -1
z Q1 Im—-17
= g ImI -
Yo () yl(:p)l_m+_m+1—|— + T T gmInT o+ gt +

1

= gmyl(w)lnerx”(lJrZan(ﬁ)xn) —m+ ) 1

_ —ma1 _
lx mo g™t Jm—1T
n=1
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Now we take the factor =™ from the series inside the third bracket. Since r1 — m = ry,
we finally find

yo(x) = cyp () Inx + 2™ Z cnx”, (12)

n=0
where we put ¢, = c.

Now for r; = 19, we have m = 0 and hence ¢,, = go = g(0) = 1 = ¢. Thus, Inz term
is definitely present in the second solution. Also in this case, the series in (11) starts
with goInz and the next term is g;x. Hence, for r; = ry, we must have ¢y = 0 in (12).

In certain cases, g,, = ¢ becomes zero (case C.ii) for m > 1. Then the second solution
is also a Frobenius series solution; otherwise, the second Frobenius series solution does
not exist.

3 Summary

The results derived in the previous section can be summarized as follows. Consider

2?y" + zp(x)y + q(2x)y = 0, (13)

where p and ¢ have convergent power series expansion in |z| < R, R > 0. Let 1,79
(r1 > r9) be the roots of the indicial equation:

r? + (p(0) — 1)r +q(0) =0 (14)
For > 0 we have the following theorems:

Theorem 1. If vy — ry is not zero or a positive integer, then there are two linearly
independent solutions y, and yo of (13) of the form

yi1(z) = a"oy(x), ya(x) = 2™ 0y(x), (15)

where 1,09 are analytic at x = 0 with radius of convergence R and o1(0) # 0 and

2(0) # 0.

Theorem 2. If ry = ry, then there are two linearly independent solutions y, and yo of
(13) of the form

yi(x) = 2"o1(z), ya(r) = (Ina)y (x) + 2" oy (2), (16)
where 01,09 are analytic at x = 0 with radius of convergence R and o1(0) # 0.

Theorem 3. If r1 — 1y is a positive integer, then there are two linearly independent
solutions ¥, and ys of (13) of the form

yi1(z) = a"oy(x), ya(x) = c(Inz)y (z) + 2™ oa(x), (17)

where 1,09 are analytic at x = 0 with radius of convergence R and o1(0) # 0 and
09(0) # 0. It may happen that ¢ = 0.
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Example 4. Discuss whether two Frobenius series solutions exist or do not exist for
the following equations:

(i) 22%y" + z(xz + 1)y — (cosz)y = 0,
(ii) x*y" — (z*sinx)y’ + 2(1 — cosx)y = 0.

Solution: (i) We can write this as

(x+1) , cosz
2 YT
Hence p(z) = (z+1)/2 and g(z) = — cosx/2. Thus, p(0) = 1/2 and ¢(0) = —1/2. The

indicial equation is

22y + y = 0.

P2+ (p0) = 1)r+¢(0) =0=2r" —r —1=0=r =1,r=—-1/2

Since r1 —r9 = 3/2, which is not zero or a positive integer, two Frobenius series solutions
exist.

(ii) We can write this as

9 4 SInz 1 —-cosz

Ty +2Ty20.

Hence p(z) = —sinz/x and q(z) = 2(1 — cosz)/x*. Thus, p(0) = —1 and ¢(0) = 1.
The indicial equation is

2 (p0) — Dr+q(0) =0= 1 —2r +1=0=r = 1=,
Since r; = 79, only one Frobenius series solutions exists.

Example 5. (Case A) Find two independent solutions around x =0 for
20y" + (x+ 1)y +3y =0

Solution: We write this as

1
z*y" + (mg)xy’ + (32/2)y = 0.

Hence p(z) = (z + 1)/2 and ¢(z) = 3z/2. Thus, p(0) = 1/2,¢(0) = 0. The indicial
equation is

24+ (p0) = Dr+q0)=0=2r —r=0=1r, =1/2,7, = 0.

Since r; — ro = 1/2, is not zero or a positive integer, two independent Frobenius series
solution exist.

Substituting
Y= z Z anxn>
n=0

(after some manipulation and cancelling ") we find

> p(n+r)aa™ + Y ((n +r—1)+ 3)an_1x" =0,

n=0 n=1
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where p(r) = r(2r — 1). Rearranging the above, we get
p(r)ag+ Y [p(n +r)a, + (n+r+ 2)an,1}a:" = 0.
n=1

Hence, we find (since ag # 0)
p(r)=0, pn+r)a,+ n+r+2)a,1 =0 forn>1.

From the first relation we find roots of the indicial equation r; = 1/2,75 = 0. Now
with the larger root r = r; = 1/2, we find

_(2n+ 5)an_1’ n>1
2n(2n + 1)

n —

Iterating we find
7 21

a; = ——=aop, A2 = ——Aag, " "

40
Hence, by induction

(2n +5)(2n + 3)

a, = (=1)" ap, n>1 (Check!)

15 - 2mn!
Thus, taking ag = 1, we find
7 21
— 2 (1L 2_...)
yi(x) =x < 693+ 10"
Now with » = r, = 0, we find
a, = _%7 n>1.
n(2n —1)

Iterating we find

a; = —3ap, az =2ap,- -

Hence, by induction

=\~ " - — o e - > k'
an = (1) <2n—1 n) <2n—3 n—l) <1 1>a0, n>1 (Check!)

Thus, taking ag = 1, we find

yo(z) = (1—3x+2x2—‘~~)
Example 6. (Case B) Find the general solution in the neighbourhood of origin for
4a?y" — 8%y + (42* + 1)y =0
Solution: We write this as

2y — (2x)zy + (z* + 1/4)y = 0.
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Hence p(z) = —2z and ¢(z) = 2* + 1/4. Thus, p(0) = 0,¢(0) = 1/4. The indicial
equation is

2+ @0)—Dr+q0)=0=r*—r+1/4=0=1 =1y =1/2.

Since the indicial equation has a double root, only one Frobenius series solution exists.
Substituting

00
r n

y=x E:anx>
n=0

(after some manipulation and cancelling ") we find

Z p(n+r)a,z" — Z 8(n+r—1a,12" + Z 4a, 92" =0,

n=0 n=1 n=2
where p(r) = (2r — 1)%. Rearranging the above, we get

p(r)ag + (p(r + 1)ay — 8ra0>x +3 {p(n +r)a, —8(n+r—1)an_1 + 4an_2]x” = 0.
n=2

Now with r» = 1/2, we find

(277, — 1)61”,1 Ap—2

a, = ag, Ap = 2 ECR n > 2.
Iterating we find
1 1 1
ag = 50’07 as gaoa ay aaoy

Hence, by induction

1

a, = —ag, n>1
n!

Induction: Claim a; = ag/k!. True for k = 1,2. Assume it is true for £ = m. Now
for k =m+1,

(2k + 1)ag a1 1 k41 ag }

GHIZWGO_WGOZ (k—l)!(k‘—{—l)Q k ap = (k;_|_1)!

Thus, taking ag = 1, we find

2 3
T i T
+++-~>::c1/2€f”.

_1/2
wle) =z <1+1! 21 " 3]

For the general solution, we need to find another solution 5. For this we use reduction
of order. Let yo(z) = y1(z)v(z). Then

1
v= /—Ze’fpdx dx,
Y1
where p(z) = —2. Hence
1
— [ Zdr =1
v(x) /a: r=Inz
and y, = (Inz)z'/?e”. Thus, the general solution is

y(z) = 2% (cy + e In )
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Example 7. (Case C.i) Find two independent solutions around x =0 for
xy" +2y +ay =0
Solution: We write this as
2y + 2xy + 2%y = 0.
Hence p(z) = 2 and ¢(z) = z?. Thus, p(0) = 2,¢(0) = 0. The indicial equation is
2+ (P0)—Dr+q0)=0=r*+r=0=7r =075 = —1.

A Frobenius series solution exists for the larger root r; = 0. Substituting
Y= z" Z anxna
n=0
(after some manipulation and cancelling z") we find

> p(n+r)aaz™ + Y ap_sz™ =0,
n=0 n=2
where p(r) = r(r + 1). Rearranging the above, we get
p(r)ag + p(r + Dagz + > [p(n +r)a, + an,g} " =0.
n=2

Hence, we find (since ag # 0)
p(r)=0, p(r+1a =0, pn+r)a,+a,_2=0 forn>2.

From the first relation we find roots of the indicial equation v = 0,79 = —1. Now with
the larger root r = rq, we find

Ap—2
a=0,a4,=——F—"", n>2.
! " n(n+1) -
Iterating we find
1 1
az _§a07 az =0, a4 aaoy
Hence, by induction
(-1 0
Aoy = (— a a =0.
2n (2n + 1)| 0 2n+1
Thus, taking ag = 1, we find
2 4 :
x x sin x
niw = (1= T )=
Since r; — ry = 1, a positive integer, the second Frobenius series solution may or may
not exist. Hence, to be sure, we need to compute it. With r = ry = —1, we find
Ap—2

0-a1 =0, a, = — n > 2.

n(n—1)



S. Ghorai 10

Now the first relation can be satisfied by taking any value of a;. For simplicity, we
choose a; = 0. Iterating we find

1 1
(y = —gydo, a3 =0, a4=—

Hence, by induction
1
QAop = (—1)H®CL0, aznt1 = 0.

Thus, indeed a second Frobenius series solution exists and taking ay = 1, we get

2 4
_1 T T COS T
— 1 _ e . frnd .
() == ( ST > z

Comment: The second solution could have been obtained using reduction of order
also. Suppose yo = vy;, then

2
x _

U:/ ——¢€ f2/‘”dxda::/cosec2xd:c:—cotx.
sin® x

Hence yo(z) = cosz/x (disregarding minus sign)
Example 8. (Case C.ii) Find general solution around x =0 for
(2* —2)y" —ay +y =0

Solution: We write this as

Hence p(z) = —z/(x — 1) and ¢(x) = z/(x — 1). Thus, p(0) = ¢(0) = 0. The indicial

equation is
2+ @0)—Dr+q0)=0=r*—r=0=r=1,7=0.

Since r; — o = 1, a positive integer, two independent Frobenius series solution may or
may not exist.

Substituting
y=a" Z apx"”,
n=0

(after some manipulation and cancelling ") we find

(x—1) Zn+r (n+7—1a,x" —xz n+r)a,z" +x2an =0.
n=0 n=0
Rearranging the above, we get

(z—=1)> (n+7r)(n+r—1a,z" —xZ(nqu)—l)anx”:O.
n=0 n=0
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OR
2y (n+r—1)P%a2" = > (n+r)(n+r—1)a,z" = 0.
n=0 n=0
OR . .
Y (n+r—2Pa12" = > (n+7r)(n+r—1)aa" =0.
n=1 n=0
OR

r(r—1)ag + i {(n +r)(n+r—1a, — (n+r— 2)2an_1}x” = 0.

n=1
Hence, we find (since ag # 0)

p(T) - 07 p(n + T>an - (n +r— 2)2(ln_1 = Ofor n > 1,

where p(r) = r(r — 1). From the first relation we find roots of the indicial equation
ry = 1,79 = 0. Now with the larger root » = r; = 1, we find

— 1)a,_
a, = M, n>1.
n(n+1)
Iterating we find
a, =0, n>1
Thus, taking ag = 1, we find
yi(z) =2

Now with r = ry = 0, we find
nin —Da, = (n —2)%a,_1, n>1.

Now for n = 1, we find 0 = ag which is a contradiction. Hence, second Frobenius series
solution does not exist. To find the second independent solution, we use reduction of
order technique. Let yo(z) = v(z)y;(z). Then

v(x) :/ylle Jrde gy

where p(z) = —x/(2? —x) = —1/(x — 1). Hence,

1 1 1
v(x) = /ﬁeln(l_:”) dr = / (:172 - x) dr = — (x + lnx) .

(Why I wrote In(1 — ) NOT In(x — 1)?) Hence, ya(z) = (1 + zlnx) (disregarding the
minus sign, since the ODE is homogeneous and linear). Thus, the general solution is
given by

y(r) = 1z + co(1 + zlnx).



