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Lecture XIV
Frobenius series: Regular singular points

1 Singular points

Consider the second order linear homogeneous equation

a0(x)y′′ + a1(x)y′ + a2(x)y = 0, x ∈ I (1)

Suppose that a0, a1 and a2 are analytic at x0 ∈ I. If a0(x0) = 0, then x0 is a singular
point for (1).

Definition 1. A point x0 ∈ I is a regular singular point for (1) if (1) can be written
as

b0(x)(x− x0)
2y′′ + b1(x)(x− x0)y

′ + b2(x)y = 0, (2)

where b0(x0) 6= 0 and b0, b1, b2 are analytic at x0.

Comment 1: Since b0(x0) 6= 0, we get an equivalent definition of regular singular
point by dividing (2) by b0(x). Thus, a point x0 ∈ I is a regular singular point for (1)
if (1) can be written as

(x− x0)
2y′′ + (x− x0)p(x)y′ + q(x)y = 0, (3)

where p and q are analytic at x0.

Comment 2: Any singular point of (1) which is not regular is called irregular singular
point.

Example 1. Consider
x3y′′ − (1− cosx)y′ + xy = 0

The singular point x0 = 0 is regular.

Example 2. Consider

x2(x− 1)2y′′ + (sinx)y′ + (x− 1)y = 0

The singular point x0 = 0 is regular whereas x0 = 1 is irregular.

Example 3. Euler-Cauchy equation:

ax2y′′ + bxy′ + cy = 0,

where a, b, c are constants. Here x0 = 0 is a regular singular point.

For simplicity, we consider a second order linear ODE with a regular singular point
at x0 = 0. If x0 6= 0, it is easy to convert the given ODE to an equivalent ODE
with regular singular point at x0 = 0. For this, we substitute t = x − x0 and let
z(t) = y(x0 + t). Then (3) becomes

t2z̈ + tp̃(t)ż + q̃(t)z = 0,
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where ˙ = d/dt. Thus, we consider following second order homogeneous linear ODE

x2y′′ + xp(x)y′ + q(x)y = 0, (4)

where p, q are analytic at the origin.

Ordinary point vs. regular singular point: This can explained by taking two ex-
amples. Consider

y′′ + y = 0,

which has 0 as the ordinary point. Note that the general solution is y = c1 cosx +
c2 sinx. At the ordinary point x0 = 0, we can find unique c1, c2 for a given K0, K1 such
that y(0) = K0, y

′(0) = K1. Thus, unique solution exists for initial conditions specified
at the ordinary point.

Now consider the Euler-Cauchy equation

x2y′′ − 2xy′ + 2y = 0,

for which x0 = 0 is a regular singular point. The general solution is y = c1x + c2x
2.

Now it is not possible to find unique values of c1, c2 for a given K0, K1 such that
y(0) = K0, y

′(0) = K1. Note that solution does not exist for K0 6= 0 since y(0) = 0.

2 Frobenius method

We would like to find two linearly independent solutions of (4) so that these form a
basis solution for x 6= 0. We find the basis solution for x > 0. For x < 0, we substitute
t = −x and carry out similar procedure for t > 0.

If p and q in (4) are constants, then a solution of (4) is of the form xr. But since p and
q are power series, we assume that a solution of (4) can be represented by an extended
power series

y = xr
∞∑

n=0

anx
n, (5)

which is a product of xr and a power series. We also assume that a0 6= 0. We formally
substitute (5) into (4) and find r and a1, a2, · · · in terms of a0 and r. Once we find (5),
we next check the convergence of the series. If it converges, then (5) becomes solution
for (4).

Now from (5), we find

x2y′′(x) =
∞∑

n=0

(n+ r)(n+ r − 1)anx
n+r, xy′(x) =

∞∑
n=0

(n+ r)anx
n+r.

Since p and q are analytic, we write

p(x) =
∞∑

n=0

pnx
n, q(x) =

∞∑
n=0

qnx
n.

Substituting into (4), we get

∞∑
n=0

(n+ r)(n+ r − 1)anx
n+r +

( ∞∑
n=0

pnx
n

)( ∞∑
n=0

(n+ r)anx
n+r

)
+

( ∞∑
n=0

qnx
n

)( ∞∑
n=0

anx
n+r

)
= 0.
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OR

xr
∞∑

n=0

[
(r + n)(r + n− 1)an +

n∑
k=0

(
(r + k)pn−k + qn−k

)
ak

]
xn = 0.

Since x > 0, this becomes

∞∑
n=0

[
(r + n)(r + n− 1)an +

n∑
k=0

(
(r + k)pn−k + qn−k

)
ak

]
xn = 0. (6)

Thus, we must have

[(r+n)(r+n−1)+(n+r)p0+q0]an+
n−1∑
k=0

[(r+k)pn−k+qn−k]ak = 0, n = 0, 1, 2, · · · (7)

Now (7) gives an in terms of a0, a1, · · · , an−1 and r.

For n = 0, we find
r(r − 1) + p0r + q0 = 0, (8)

since a0 6= 0. Equation (8) is called indicial equation for (4). The form of the linearly
independent solutions of (4) depends on the roots of (8).

Let ρ(r) = r(r − 1) + p0r + q0. Then for n = 1, 2, · · ·, we find

ρ(r + n)an + bn = 0,

where

bn =
n−1∑
k=0

[(r + k)pn−k + qn−k]ak.

Notice that bn is a linear combination of a0, a1, · · · , an−1. Thus, we can find an uniquely
in terms of r and a0 if ρ(r+ n) 6= 0. If ρ(r+ n) = 0, then it is possible to find value of
an in certain cases.

Let r1, r2 be the roots of the indicial equation (8). We assume that the roots are real
and r1 ≥ r2. For r1, clearly ρ(r1 + n) 6= 0 for n = 1, 2, · · ·. Thus, we can determine
a1, a2, a3, · · · corresponding to r1. Clearly, one Frobenius series (extended power series)
solution y1 corresponding to the larger root r1 always exists. Suppose a0 = 1, then

y1(x) = xr1

(
1 +

∞∑
n=1

an(r1)x
n
)
. (9)

Now for r = r2, three cases may appear. These are as follows:

A. r1 − r2 is not a nonnegative integer: Then r2 + n 6= r1 for any integer n ≥ 1
and as a result ρ(r2 + n) 6= 0 for any n ≥ 1.Thus, we can determine a1, a2, a3, · · ·
corresponding to r2. Clearly, another Frobenius series solution y2 corresponding
to the smaller root exists. Suppose a0 = 1, then

y2(x) = xr2

(
1 +

∞∑
n=1

an(r2)x
n
)
. (10)

B. r1 = r2, double root: Clearly a second extended power series (Frobenius series)
solution does not exist.
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C. r1 − r2 = m, m ≥ 1 is a positive integer: In this case ρ(r2 + m) = ρ(r1) = 0.
Thus, we can find a1, a2, · · · , am−1. But for am, we have

ρ(r2 +m)am = −bm.

Since ρ(r) = (r − r1)(r − r2), we have

ρ(r +m) = (r +m− r1)(r +m− r2) = (r − r2)(r +m− r2).

Clearly two cases may arise here:

C.i bm has a factor r − r2, i.e. bm(r2) = 0. In this case, we cancel factor r − r2
from both sides and find am(r2) as a finite number. Then we can continue
calculating remaining coefficients am+1, am+2, · · ·. Hence, a second Frobenius
series solution exists.

C.ii On the other hand, if bm(r2) 6= 0, then it is not possible to continue the
calculations of an for n ≥ m. Hence, a second Frobenius series solution does
not exist.

To find the form of the solution in the case of B and C described above, we use the
reduction of order technique. We know that y1(x) (corresponding the larger root)
always exists. Let y2(x) = v(x)y1(x). Then

v′ =
1

y2
1

e−
∫

p(x)/x dx

=
1

x2r1

(
1 + a1(r1)x+ a2(r1)x2 + · · ·

)2 e
−p0 ln x−p1x−···

=
1

x2r1+p0

(
1 + a1(r1)x+ a2(r1)x2 + · · ·

)2 e
−p1x−···

=
1

x2r1+p0
g(x),

where g(x) is analytic at x = 0 and g(0) = 1. Since g(x) is analytic at x = 0 with
g(0) = 1, we must have g(x) = 1 +

∑∞
n=1 gnx

n. Since r1, r2 are roots of (8), we must
have

r1 + r2 = 1− p0 ⇒ 2r1 + p0 = m+ 1.

Hence,

v′ =
1

xm+1
+
g1

xm
+ · · ·+ gm−1

x2
+
gm

x
+ gm+1 + · · · ,

OR

v(x) =
x−m

−m
+
g1x

−m+1

−m+ 1
+ · · ·+ gm−1x

−1

−1
+ gm lnx+ gm+1x+ · · · . (11)

Thus,

y2(x) = y1(x)

[
x−m

−m
+
g1x

−m+1

−m+ 1
+ · · ·+ gm−1x

−1

−1
+ gm lnx+ gm+1x+ · · · .

]

= gmy1(x) lnx+ xr1

(
1 +

∞∑
n=1

an(r1)x
n
) [x−m

−m
+
g1x

−m+1

−m+ 1
+ · · ·+ gm−1x

−1

−1
+ gm+1x+ · · · .

]



S. Ghorai 5

Now we take the factor x−m from the series inside the third bracket. Since r1 −m = r2,
we finally find

y2(x) = cy1(x) lnx+ xr2

∞∑
n=0

cnx
n, (12)

where we put gm = c.

Now for r1 = r2, we have m = 0 and hence gm = g0 = g(0) = 1 = c. Thus, lnx term
is definitely present in the second solution. Also in this case, the series in (11) starts
with g0 lnx and the next term is g1x. Hence, for r1 = r2, we must have c0 = 0 in (12).

In certain cases, gm = c becomes zero (case C.ii) for m ≥ 1. Then the second solution
is also a Frobenius series solution; otherwise, the second Frobenius series solution does
not exist.

3 Summary

The results derived in the previous section can be summarized as follows. Consider

x2y′′ + xp(x)y′ + q(x)y = 0, (13)

where p and q have convergent power series expansion in |x| < R, R > 0. Let r1, r2
(r1 ≥ r2) be the roots of the indicial equation:

r2 + (p(0)− 1)r + q(0) = 0 (14)

For x > 0 we have the following theorems:

Theorem 1. If r1 − r2 is not zero or a positive integer, then there are two linearly
independent solutions y1 and y2 of (13) of the form

y1(x) = xr1σ1(x), y2(x) = xr2σ2(x), (15)

where σ1, σ2 are analytic at x = 0 with radius of convergence R and σ1(0) 6= 0 and
σ2(0) 6= 0.

Theorem 2. If r1 = r2, then there are two linearly independent solutions y1 and y2 of
(13) of the form

y1(x) = xr1σ1(x), y2(x) = (ln x)y1(x) + xr2+1σ2(x), (16)

where σ1, σ2 are analytic at x = 0 with radius of convergence R and σ1(0) 6= 0.

Theorem 3. If r1 − r2 is a positive integer, then there are two linearly independent
solutions y1 and y2 of (13) of the form

y1(x) = xr1σ1(x), y2(x) = c(lnx)y1(x) + xr2σ2(x), (17)

where σ1, σ2 are analytic at x = 0 with radius of convergence R and σ1(0) 6= 0 and
σ2(0) 6= 0. It may happen that c = 0.
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Example 4. Discuss whether two Frobenius series solutions exist or do not exist for
the following equations:

(i) 2x2y′′ + x(x+ 1)y′ − (cosx)y = 0,

(ii) x4y′′ − (x2 sinx)y′ + 2(1− cosx)y = 0.

Solution: (i) We can write this as

x2y′′ +
(x+ 1)

2
xy′ − cosx

2
y = 0.

Hence p(x) = (x+1)/2 and q(x) = − cosx/2. Thus, p(0) = 1/2 and q(0) = −1/2. The
indicial equation is

r2 + (p(0)− 1)r + q(0) = 0⇒ 2r2 − r − 1 = 0⇒ r1 = 1, r2 = −1/2.

Since r1−r2 = 3/2, which is not zero or a positive integer, two Frobenius series solutions
exist.

(ii) We can write this as

x2y′′ − sinx

x
xy′ + 2

1− cosx

x2
y = 0.

Hence p(x) = − sinx/x and q(x) = 2(1 − cosx)/x2. Thus, p(0) = −1 and q(0) = 1.
The indicial equation is

r2 + (p(0)− 1)r + q(0) = 0⇒ r2 − 2r + 1 = 0⇒ r1 = 1 = r2.

Since r1 = r2, only one Frobenius series solutions exists.

Example 5. (Case A) Find two independent solutions around x = 0 for

2xy′′ + (x+ 1)y′ + 3y = 0

Solution: We write this as

x2y′′ +
(x+ 1)

2
xy′ + (3x/2)y = 0.

Hence p(x) = (x + 1)/2 and q(x) = 3x/2. Thus, p(0) = 1/2, q(0) = 0. The indicial
equation is

r2 + (p(0)− 1)r + q(0) = 0⇒ 2r2 − r = 0⇒ r1 = 1/2, r2 = 0.

Since r1 − r2 = 1/2, is not zero or a positive integer, two independent Frobenius series
solution exist.

Substituting

y = xr
∞∑

n=0

anx
n,

(after some manipulation and cancelling xr) we find

∞∑
n=0

ρ(n+ r)anx
n +

∞∑
n=1

(
(n+ r − 1) + 3

)
an−1x

n = 0,
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where ρ(r) = r(2r − 1). Rearranging the above, we get

ρ(r)a0 +
∞∑

n=1

[
ρ(n+ r)an + (n+ r + 2)an−1

]
xn = 0.

Hence, we find (since a0 6= 0)

ρ(r) = 0, ρ(n+ r)an + (n+ r + 2)an−1 = 0 for n ≥ 1.

From the first relation we find roots of the indicial equation r1 = 1/2, r2 = 0. Now
with the larger root r = r1 = 1/2, we find

an = −(2n+ 5)an−1

2n(2n+ 1)
, n ≥ 1.

Iterating we find

a1 = −7

6
a0, a2 =

21

40
a0, · · ·

Hence, by induction

an = (−1)n (2n+ 5)(2n+ 3)

15 · 2nn!
a0, n ≥ 1 (Check!)

Thus, taking a0 = 1, we find

y1(x) = x1/2
(

1− 7

6
x+

21

40
x2 − · · ·

)

Now with r = r2 = 0, we find

an = −(n+ 2)an−1

n(2n− 1)
, n ≥ 1.

Iterating we find
a1 = −3a0, a2 = 2a0, · · ·

Hence, by induction

an = (−1)n
(

5

2n− 1
− 2

n

)(
5

2n− 3
− 2

n− 1

)
· · ·

(
5

1
− 2

1

)
a0, n ≥ 1 (Check!)

Thus, taking a0 = 1, we find

y2(x) =
(
1− 3x+ 2x2 − · · ·

)
Example 6. (Case B) Find the general solution in the neighbourhood of origin for

4x2y′′ − 8x2y′ + (4x2 + 1)y = 0

Solution: We write this as

x2y′′ − (2x)xy′ + (x2 + 1/4)y = 0.
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Hence p(x) = −2x and q(x) = x2 + 1/4. Thus, p(0) = 0, q(0) = 1/4. The indicial
equation is

r2 + (p(0)− 1)r + q(0) = 0⇒ r2 − r + 1/4 = 0⇒ r1 = r2 = 1/2.

Since the indicial equation has a double root, only one Frobenius series solution exists.
Substituting

y = xr
∞∑

n=0

anx
n,

(after some manipulation and cancelling xr) we find

∞∑
n=0

ρ(n+ r)anx
n −

∞∑
n=1

8(n+ r − 1)an−1x
n +

∞∑
n=2

4an−2x
n = 0,

where ρ(r) = (2r − 1)2. Rearranging the above, we get

ρ(r)a0 +
(
ρ(r + 1)a1 − 8ra0

)
x+

∞∑
n=2

[
ρ(n+ r)an − 8(n+ r − 1)an−1 + 4an−2

]
xn = 0.

Now with r = 1/2, we find

a1 = a0, an =
(2n− 1)an−1

n2
− an−2

n2
, n ≥ 2.

Iterating we find

a2 =
1

2!
a0, a3 =

1

3!
a0, a4 =

1

4!
a0, · · ·

Hence, by induction

an =
1

n!
a0, n ≥ 1.

{Induction: Claim ak = a0/k!. True for k = 1, 2. Assume it is true for k = m. Now

for k = m+ 1,

ak+1 =
(2k + 1)ak

(k + 1)2
a0 −

ak−1

(k + 1)2
a0 =

1

(k − 1)!(k + 1)2

k + 1

k
a0 =

a0

(k + 1)!
}

Thus, taking a0 = 1, we find

y1(x) = x1/2

(
1 +

x

1!
+
x2

2!
+
x3

3!
+ · · ·

)
= x1/2ex.

For the general solution, we need to find another solution y2. For this we use reduction
of order. Let y2(x) = y1(x)v(x). Then

v =
∫ 1

y2
1

e−
∫

pdx dx,

where p(x) = −2. Hence

v(x) =
∫ 1

x
dx = lnx

and y2 = (lnx)x1/2ex. Thus, the general solution is

y(x) = x1/2ex(c1 + c2 lnx)
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Example 7. (Case C.i) Find two independent solutions around x = 0 for

xy′′ + 2y′ + xy = 0

Solution: We write this as

x2y′′ + 2xy′ + x2y = 0.

Hence p(x) = 2 and q(x) = x2. Thus, p(0) = 2, q(0) = 0. The indicial equation is

r2 + (p(0)− 1)r + q(0) = 0⇒ r2 + r = 0⇒ r1 = 0, r2 = −1.

A Frobenius series solution exists for the larger root r1 = 0. Substituting

y = xr
∞∑

n=0

anx
n,

(after some manipulation and cancelling xr) we find

∞∑
n=0

ρ(n+ r)anx
n +

∞∑
n=2

an−2x
n = 0,

where ρ(r) = r(r + 1). Rearranging the above, we get

ρ(r)a0 + ρ(r + 1)a1x+
∞∑

n=2

[
ρ(n+ r)an + an−2

]
xn = 0.

Hence, we find (since a0 6= 0)

ρ(r) = 0, ρ(r + 1)a1 = 0, ρ(n+ r)an + an−2 = 0 for n ≥ 2.

From the first relation we find roots of the indicial equation r1 = 0, r2 = −1. Now with
the larger root r = r1, we find

a1 = 0, an = − an−2

n(n+ 1)
, n ≥ 2.

Iterating we find

a2 = − 1

3!
a0, a3 = 0, a4 =

1

5!
a0, · · ·

Hence, by induction

a2n = (−1)n 1

(2n+ 1)!
a0, a2n+1 = 0.

Thus, taking a0 = 1, we find

y1(x) =

(
1− x2

3!
+
x4

5!
− · · ·

)
=

sinx

x

Since r1 − r2 = 1, a positive integer, the second Frobenius series solution may or may
not exist. Hence, to be sure, we need to compute it. With r = r2 = −1, we find

0 · a1 = 0, an = − an−2

n(n− 1)
, n ≥ 2.
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Now the first relation can be satisfied by taking any value of a1. For simplicity, we
choose a1 = 0. Iterating we find

a2 = − 1

2!
a0, a3 = 0, a4 =

1

4!
a0, · · ·

Hence, by induction

a2n = (−1)n 1

(2n)!
a0, a2n+1 = 0.

Thus, indeed a second Frobenius series solution exists and taking a0 = 1, we get

y2(x) = x−1

(
1− x2

2!
+
x4

4!
− · · ·

)
=

cosx

x
.

Comment: The second solution could have been obtained using reduction of order
also. Suppose y2 = vy1, then

v =
∫ x2

sin2 x
e−
∫

2/x dxdx =
∫

cosec2x dx = − cotx.

Hence y2(x) = cos x/x (disregarding minus sign)

Example 8. (Case C.ii) Find general solution around x = 0 for

(x2 − x)y′′ − xy′ + y = 0

Solution: We write this as

x2y′′ − x

x− 1
xy′ +

x

x− 1
y = 0.

Hence p(x) = −x/(x − 1) and q(x) = x/(x − 1). Thus, p(0) = q(0) = 0. The indicial
equation is

r2 + (p(0)− 1)r + q(0) = 0⇒ r2 − r = 0⇒ r1 = 1, r2 = 0.

Since r1− r2 = 1, a positive integer, two independent Frobenius series solution may or
may not exist.

Substituting

y = xr
∞∑

n=0

anx
n,

(after some manipulation and cancelling xr) we find

(x− 1)
∞∑

n=0

(n+ r)(n+ r − 1)anx
n − x

∞∑
n=0

(n+ r)anx
n + x

∞∑
n=0

anx
n = 0.

Rearranging the above, we get

(x− 1)
∞∑

n=0

(n+ r)(n+ r − 1)anx
n − x

∞∑
n=0

(
(n+ r)− 1

)
anx

n = 0.
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OR

x
∞∑

n=0

(n+ r − 1)2anx
n −

∞∑
n=0

(n+ r)(n+ r − 1)anx
n = 0.

OR ∞∑
n=1

(n+ r − 2)2an−1x
n −

∞∑
n=0

(n+ r)(n+ r − 1)anx
n = 0.

OR

r(r − 1)a0 +
∞∑

n=1

[
(n+ r)(n+ r − 1)an − (n+ r − 2)2an−1

]
xn = 0.

Hence, we find (since a0 6= 0)

ρ(r) = 0, ρ(n+ r)an − (n+ r − 2)2an−1 = 0for n ≥ 1,

where ρ(r) = r(r − 1). From the first relation we find roots of the indicial equation
r1 = 1, r2 = 0. Now with the larger root r = r1 = 1, we find

an =
(n− 1)an−1

n(n+ 1)
, n ≥ 1.

Iterating we find
an = 0, n ≥ 1.

Thus, taking a0 = 1, we find
y1(x) = x

Now with r = r2 = 0, we find

n(n− 1)an = (n− 2)2an−1, n ≥ 1.

Now for n = 1, we find 0 = a0 which is a contradiction. Hence, second Frobenius series
solution does not exist. To find the second independent solution, we use reduction of
order technique. Let y2(x) = v(x)y1(x). Then

v(x) =
∫ 1

y2
1

e−
∫

pdxdx,

where p(x) = −x/(x2 − x) = −1/(x− 1). Hence,

v(x) =
∫ 1

x2
eln(1−x) dx =

∫ (
1

x2
− 1

x

)
dx = −

(
1

x
+ lnx

)
.

(Why I wrote ln(1− x) NOT ln(x− 1)?) Hence, y2(x) = (1 + x lnx) (disregarding the
minus sign, since the ODE is homogeneous and linear). Thus, the general solution is
given by

y(x) = c1x+ c2(1 + x lnx).


