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Lecture XV
Bessel’s equation, Bessel’s function

1 Gamma function

Gamma function is defined by

Γ(p) =
∫ ∞
0

e−ttp−1 dt, p > 0. (1)

The integral in (1) is convergent that can be proved easily. Some special properties of
the gamma function are the following:

i. It is readily seen that Γ(p+ 1) = pΓ(p), since

Γ(p+ 1) = lim
T→∞

∫ T

0
e−ttp dt

= lim
T→∞

[
−e−ttp

∣∣∣T
0

+ p
∫ T

0
e−ttp−1 dt

]

= p
∫ ∞
0

e−ttp−1 dt = pΓ(p).

ii. Γ(1) = 1 (trivial proof)

iii. If p = m, a positive integer, then Γ(m+ 1) = m! (use i. repeatedly)

iv. Γ(1/2) =
√
π. This can be proved as follows:

I = Γ(1/2) =
∫ ∞
0

e−tt−1/2 dt = 2
∫ ∞
0

e−u
2

du.

Hence
I2 = 4

∫ ∞
0

e−u
2

du
∫ ∞
0

e−v
2

dv = 4
∫ ∞
0

∫ ∞
0

e−(x2+y2)dx dy.

Using polar coordinates ρ, θ, the above becomes

I2 = 4
∫ ∞
0

∫ π/2

0
e−ρ

2

ρ dρ dθ ⇒ I2 = π ⇒ I =
√
π

v. Using relation in i., we can extend the definition of Γ(p) for p < 0. Suppose N is
a positive integer and −N < p < −N + 1. Now using relation of i., we find

Γ(p) =
Γ(p+ 1)

p
=

Γ(p+ 2)

p(p+ 1)
= · · · = Γ(p+N)

p(p+ 1) · · · (p+N − 1)
.

Since p+N > 0, the above relation is well defined.

vi. Γ(p) is not defined when p is zero or a negative integer. For small positive ε,

Γ(±ε) =
Γ(1± ε)
±ε

≈ 1

±ε
→ ±∞ as ε→ 0.

Since Γ(0) is undefined, Γ(p) is also undefined when p is a negative integer.
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2 Bessel’s equation

Bessel’s equation of order ν (ν ≥ 0) is given by

x2y′′ + xy′ + (x2 − ν2)y = 0. (2)

Obviously, x = 0 is regular singular point. Since p(0) = 1, q(0) = −ν2, the indicial
equation is given by

r2 − ν2 = 0.

Hence, r1 = ν, r2 = −ν and r1 − r2 = 2ν. A Frobenius series solution exists for the
larger root r = r1 = ν. To find this series, we substitute

y = xr
∞∑
n=0

anx
n, x > 0

into (2) and (after some manipulation) find

∞∑
n=0

ρ(n+ r)anx
n +

∞∑
n=2

an−2x
n = 0

where ρ(r) = r2 − ν2. This equation is rearranged as

ρ(r)a0 + ρ(r + 1)a1x+
∞∑
n=2

(
ρ(n+ r)an + an−2

)
xn = 0.

Hence, we find (since a0 6= 0)

ρ(r) = 0, ρ(r + 1)a1 = 0, ρ(r + n)an = −an−2, n ≥ 2.

From the first relation, we get r1 = ν, r2 = −ν. Now with the larger root r = r1 we
find

a1 = 0, an = − an−2

n(n+ 2ν)
, n ≥ 2.

Iterating we find (by induction),

a2n+1 = 0, a2n = (−1)n
1

22nn!(ν + 1)(ν + 2) · · · (ν + n)
a0, n ≥ 1.

Hence

y1(x) = a0x
ν

(
1 +

∞∑
n=1

(−1)nx2n

22nn!(ν + 1)(ν + 2) · · · (ν + n)

)
. (3)

Here it is usual to choose (instead of a0 = 1 as was done in lecture 14 )

a0 =
1

2νΓ(ν + 1)
.

Then the Frobenius series solution (3) is called the Bessel function of order ν of the
first kind and is denoted by Jν(x):

Jν(x) =
∞∑
n=0

(−1)n

n!Γ(n+ ν + 1)

(
x

2

)2n+ν

. (4)

To find the second independent solution, we consider the following three cases:
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A. r1− r2 = 2ν is not a nonnegative integer: We know that a second Frobenius
series solution for r2 = −ν exist. We do similar calculation as in the case of r1
and it turns out that the resulting series is given by (4) with ν replaced by −ν.
Hence, the second solution is given by

J−ν(x) =
∞∑
n=0

(−1)n

n!Γ(n− ν + 1)

(
x

2

)2n−ν
. (5)

B. r1 = r2: Obviously this corresponds to ν = 0 and a second Frobenius series
solution does not exist.

C. r1 − r2 = 2ν is a positive integer: Now there are two cases. We discuss them
separately.

C.i ν is not a positive integer: Clearly ν = (2k+1)/2, where k ∈ {0, 1, 2, · · ·}.
Now we have found earlier that (since a0 6= 0)

ρ(r) = 0, ρ(r + 1)a1 = 0, ρ(r + n)an = −an−2, n ≥ 2.

With r = r2 = −ν, we get

ρ(r) = 0; 1 ·
(
1− (2k + 1)

)
a1 = 0; n ·

(
n− (2k + 1)

)
an = −an−2, n ≥ 2.

It is clear that the even terms a2n can be determined uniquely. For odd
terms, a1 = a3 = · · · = a2k−1 = 0 but for a2k+1 we must have

n · 0 · a2k+1 = −a2k−1 ⇒ 0 · a2k+1 = 0.

This can be satisfied by taking any value of a2k+1 and for simplicity, we can
take a2k+1 = 0. Rest of the odd terms thus also vanish. Hence, the second
solution in this case is also given by (5), i.e.

J−ν(x) =
∞∑
n=0

(−1)n

n!Γ(n− ν + 1)

(
x

2

)2n−ν
. (6)

C.ii ν is a positive integer: Clearly ν = k, where k ∈ {1, 2, 3, · · ·}. Now we
find (since a0 6= 0)

ρ(r) = 0, ρ(r + 1)a1 = 0, ρ(r + n)an = −an−2, n ≥ 2.

With r = r2 = −ν, we get

ρ(r) = 0; 1 ·
(
1− 2k

)
a1 = 0; n ·

(
n− 2k

)
an = −an−2, n ≥ 2.

It is clear that all the odd terms a2n+1 vanish. For even terms, a2, a4, · · · , a2k−2

each is nonzero. For a2k we must have

n · 0 · a2k = −a2k−2 ⇒ 0 · a2k 6= 0,

which is a contradiction. Thus, a second Frobenius series solution does not
exist in this case.
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Summary of solutions for Bessel’s equation: The Bessel’s equation of order ν
(ν ≥ 0)

x2y′′ + xy′ + (x2 − ν)y = 0,

has two independent Frobenius series solutions Jν and J−ν when ν is not an (nonneg-
ative) integer:

Jν(x) =
∞∑
n=0

(−1)n

n!Γ(n+ ν + 1)

(
x

2

)2n+ν

, J−ν(x) =
∞∑
n=0

(−1)n

n!Γ(n− ν + 1)

(
x

2

)2n−ν
.

Thus the general solution, when ν is not an (nonnegative) integer, is

y(x) = C1Jν(x) + C2J−ν(x).

When ν is a (nonnegative) integer, a second solution, which is independent of Jν , can
be found. This solution is called Bessel function of second kind and is denoted by Yν .
Hence, the general solution, when ν is an (nonnegative) integer, is

y(x) = C1Jν(x) + C2Yν(x).

3 Linear dependence of Jm and J−m, m is a +ve integer

When ν = m is a positive integer, then

Jm(x) =
∞∑
n=0

(−1)n

n!Γ(n+m+ 1)

(
x

2

)2n+m

=
∞∑
n=0

(−1)n

n!(n+m)!

(
x

2

)2n+m

,

since Γ(n+m+ 1) = (n+m)!.

Since Γ(±0) = ±∞, we define 1/Γ(k) to be zero when k is nonpositive integer. Now

J−m(x) =
∞∑
n=0

(−1)n

n!Γ(n−m+ 1)

(
x

2

)2n−m
.

Now each term in the sum corresponding to n = 0 to n = m − 1 is zero since 1/Γ(k)
is zero when k is nonpositive integer. Hence, we write the sum starting from n = m:

J−m(x) =
∞∑
n=m

(−1)n

n!Γ(n−m+ 1)

(
x

2

)2n−m
.

Substituting n−m = k, we find

J−m(x) =
∞∑
k=0

(−1)k+m

(m+ k)!Γ(k + 1)

(
x

2

)2(m+k)−m

= (−1)m
∞∑
k=0

(−1)k

k!(m+ k)!

(
x

2

)2k+m

= (−1)mJm(x).

Hence Jm and J−m becomes linearly dependent when m is a positive integer.



S. Ghorai 5

4 Properties of Bessel function

Few important relationships are very useful in application. These are described here.

A. From the expression for Jν given in (4), we find

xνJν(x) =
∞∑
n=0

(−1)n

n!Γ(n+ ν + 1)

(
x

2

)2n+2ν

Taking derivative with respect to x we find

(
xνJν(x)

)′
=
∞∑
n=0

(−1)n(n+ ν)

n!Γ(n+ ν + 1)

(
x

2

)2n+2ν−1

=
∞∑
n=0

(−1)n

n!Γ(n+ ν)

(
x

2

)2n+2ν−1

,

where we have used Γ(n + ν + 1) = (n + ν)Γ(n + ν). We can write the above
relation as (

xνJν(x)
)′

= xν
∞∑
n=0

(−1)n

n!Γ
(
n+ (ν − 1) + 1

) (x
2

)2n+ν−1

.

Hence, (
xνJν(x)

)′
= xνJν−1(x). (7)

B. From (4), we find

x−νJν(x) =
∞∑
n=0

(−1)n

22n+νn!Γ(n+ ν + 1)
x2n.

Taking derivative with respect to x we find

(
x−νJν(x)

)′
=
∞∑
n=1

(−1)n

22n+ν−1(n− 1)!Γ(n+ ν + 1)
x2n−1.

Note that the sum runs from n = 1 (in contrast to that in A). Let k = n − 1,
then we obtain

(
x−νJν(x)

)′
= x−ν

∞∑
k=0

(−1)k+1

k!Γ
(
k + (ν + 1) + 1

) (x
2

)2k+ν+1

= −x−ν
∞∑
k=0

(−1)k

k!Γ
(
k + (ν + 1) + 1

) (x
2

)2k+ν+1

.

Hence, (
x−νJν(x)

)′
= −x−νJν+1(x). (8)

Note: In the first relation A, while taking derivative, we keep the sum running
from n = 0. This is true only when ν > 0. In the second relation B, we only
need ν ≥ 0. Taking ν = 0 in B, we find J ′0 = −J1. If we put ν = 0 in A, then we
find J ′0 = J−1. But J−1 = −J1 and hence we find the same relation as that in B.
Hence, the first relation is also valid for ν ≥ 0.



S. Ghorai 6

C. From A and B, we get

J ′ν +
ν

x
Jν = Jν−1

J ′ν −
ν

x
Jν = −Jν+1

Adding and subtracting we find

Jν−1 − Jν+1 = 2J ′ν (9)

and

Jν−1 + Jν+1 =
2ν

x
Jν . (10)


