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Lecture XV

Bessel’s equation, Bessel’s function

1 Gamma function

Gamma function is defined by

T(p) = / el dt,  p> 0. (1)
0
The integral in (1) is convergent that can be proved easily. Some special properties of
the gamma function are the following:

i. It is readily seen that I'(p + 1) = pI'(p), since

T
I'p+1) = Jim ; e P dt
T T
= lim l—e‘tt”‘ +p / e_tt”_ldt]
T—o00o 0 0

= p /DOO e~ "'~ dt = pL'(p).

ii. I'(1) =1 (trivial proof)
iii. If p = m, a positive integer, then I'(m + 1) = m! (use i. repeatedly)

iv. T'(1/2) = y/m. This can be proved as follows:

[=T(1/2) = /°° 2 dt =2 [T e du
0 0

I? = 4/00 e du /OO e dv = 4/00 /OO e~ @) gy dy.
0 0 o Jo

Using polar coordinates p, 6, the above becomes

oo /2
12=4/ / e pdpdd = I =7 = I = /7
0 0

Hence

v. Using relation in i., we can extend the definition of I'(p) for p < 0. Suppose N is
a positive integer and —N < p < —N + 1. Now using relation of i., we find

F(p):F(erl):F(er?):‘_,: I'(p+ N)
p p(p+1) pp+1)---(p+N—-1)

Since p + N > 0, the above relation is well defined.

vi. I'(p) is not defined when p is zero or a negative integer. For small positive €,

I'(1+ 1
( 6) — — t+o00 as € — 0.
€

Pre)=—F—~7%

Since I'(0) is undefined, I'(p) is also undefined when p is a negative integer.
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2 Bessel’s equation

Bessel’s equation of order v (v > 0) is given by

22y + xy + (22 — )y = 0. (2)
Obviously, z = 0 is regular singular point. Since p(0) = 1,¢(0) = —v?, the indicial
equation is given by
r? — 12 =0.
Hence, 1 = v,75 = —v and r; — o = 2v. A Frobenius series solution exists for the

larger root » = r; = v. To find this series, we substitute
o
y:xTZanx", x>0
n=0
into (2) and (after some manipulation) find

> pn+r)agz™ + > ap_0z™ =0
n=0 n=2
where p(r) = r? — v2. This equation is rearranged as

p(r)ag + p(r + 1ajx + Z (p(n +r)a, + an,2>x" =0.
n=2

Hence, we find (since ag # 0)

p(r)=0, p(r+1)a; =0, p(r+n)a, = —a,_2, n>2.

From the first relation, we get ry = v,79 = —v. Now with the larger root r = r; we
find a
a =0, a,=——""22_ n>2
! o n(n+2v)’ -

Iterating we find (by induction),

1
22pl(v+ 1) (v +2)--- (v +n)

agny1 =0,  ag, = (—1)n apg, n =1

Hence

) s (_1)n$2n
yi(x) = aox (H,;Q?nn!(w1)(u+2)---(v+”)>' ¥

Here it is usual to choose (instead of ag =1 as was done in lecture 14 )

1

T2t 1)

Then the Frobenius series solution (3) is called the Bessel function of order v of the
first kind and is denoted by J,(x):

L& gy
@) =2 nl'(n+v+1) (2) ' )

n=0

To find the second independent solution, we consider the following three cases:
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A. r1 —ry = 2r is not a nonnegative integer: We know that a second Frobenius
series solution for ro = —v exist. We do similar calculation as in the case of r;
and it turns out that the resulting series is given by (4) with v replaced by —v.
Hence, the second solution is given by

Jle) = mr(fa_—l )1/n+ 0 <;)2n (5)

n=0

B. r1 = ry: Obviously this corresponds to ¥ = 0 and a second Frobenius series
solution does not exist.

C. ry —ry = 2v is a positive integer: Now there are two cases. We discuss them
separately.

C. v is not a positive integer: Clearly v = (2k+1)/2, where k € {0,1,2,---}.
Now we have found earlier that (since ag # 0)

p(r) =0, p(r +1)ar =0, p(r +n)a, = —an-2, n=2.
With r = ry = —v, we get
pr)=0; 1- (1= 2k+1))ar =0; n- (n— (2k+1))an, = —tnz, n>2.

It is clear that the even terms as, can be determined uniquely. For odd
terms, a1 = az = -+ = agp_1 = 0 but for asg,; we must have

n-0-agry1 = —agr—1 = 0-agyr = 0.

This can be satisfied by taking any value of asx 1 and for simplicity, we can
take asgry1 = 0. Rest of the odd terms thus also vanish. Hence, the second
solution in this case is also given by (5), i.e.

Tovlw) = i n!r(fl_—l):—l— 1) (;;)%—V_ ©)

n=0

C.i v is a positive integer: Clearly v = k, where k € {1,2,3,---}. Now we
find (since ag # 0)

p(r) =0, p(r+1)a; =0, p(r+n)a, = —a,_2, n>2.
With r = ry = —v, we get
p(r) =05 1- (1= 2k)ar = 0 n- (n—2k)a, = —ap3, n 22

It is clear that all the odd terms as,, 11 vanish. For even terms, as, a4, - - -, aop_o
each is nonzero. For aq;, we must have

n-0-ag = —ag—2 = 0-ay #0,

which is a contradiction. Thus, a second Frobenius series solution does not
exist in this case.
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Summary of solutions for Bessel’s equation: The Bessel’s equation of order v
(v = 0)

2y +zy + (2° = Vy =0,

has two independent Frobenius series solutions J, and J_, when v is not an (nonneg-
ative) integer:

Tolw) = ni:: n!r(;_jr+ 1) (;)%w’ Tulw) = ZO: n!r(fl_—l)l/n—i— 1) (326)%

0 0

Thus the general solution, when v is not an (nonnegative) integer, is
y(z) = C1J,(z) + Cod_, ().

When v is a (nonnegative) integer, a second solution, which is independent of J,, can
be found. This solution is called Bessel function of second kind and is denoted by Y,,.
Hence, the general solution, when v is an (nonnegative) integer, is

y(x) = C1J,(x) + CLY, (7).

3 Linear dependence of J,, and J_,,, m is a +ve integer

When v = m is a positive integer, then

Im() = i n!F(qE,ji—lz): +1) <;)2n+m i nl(n + nm) (;>2n+m’

n=0 n=0

since '(n+m +1) = (n+m)l.
Since I'(£0) = +oo, we define 1/I'(k) to be zero when k is nonpositive integer. Now

T(e) =3 n!F(TE_—lz;L +1) (:;;)2"—7”_

n=0

Now each term in the sum corresponding to n = 0 to n = m — 1 is zero since 1/I'(k)
is zero when k is nonpositive integer. Hence, we write the sum starting from n = m:

i n—22+1) (9;)2"‘7“'

n=m

Substituting n — m = k, we find

00 1>7€+m T 2(m+k)
Foml@) = ,;) m+k N (k+1 )(2)

- s G

= (=D)"Jm(2).

Hence J,, and J_,, becomes linearly dependent when m is a positive integer.
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4 Properties of Bessel function
Few important relationships are very useful in application. These are described here.

A. From the expression for J, given in (4), we find

], (x) = Z:O nlr(;__:):+ 3 <§>2n+2u

Taking derivative with respect to x we find

(x”Jy(x))/ _ i (=1)™(n +v) <§)2n+2ul _ gm <323>2n+21/17

nll(n+v+1)

where we have used I'(n + v + 1) = (n 4+ v)['(n + v). We can write the above
relation as

(o) S Uy

n—0 n!F(n—i— (v—1)+ 1) 2

Hence,

(a" T (@) = a"Jya (). (7)
B. From (4), we find

—v o = (_1)71 2n
el =2 22ntvpll(n + v + 1)x '

n=0

Taking derivative with respect to = we find

—v ! S —1)" 2n—1
(a: JV(.CE)) 2222%”71( (1) 2L

= n—I'n+v+1)

Note that the sum runs from n = 1 (in contrast to that in A). Let £ = n — 1,
then we obtain

i ;o v 00 (_1)k+1 z 2k+v+1
(27" L(x) = ,;)k!l“(k+ (v+1)+1) (2)

R Gl

Sk (k+(v+1) +1) <2

T ) 2k+v+1

Hence,
!/

(27" T(@)) = =2 (). (8)
Note: In the first relation A, while taking derivative, we keep the sum running
from n = 0. This is true only when v > 0. In the second relation B, we only
need v > 0. Taking v = 0 in B, we find J) = —J;. If we put v =0 in A, then we
find J) = J_;. But J_; = —J; and hence we find the same relation as that in B.
Hence, the first relation is also valid for v > 0.
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C. From A and B, we get

Ay S
Xz

v

J,,/ - ;‘]I/ = —Jy4i1
Adding and subtracting we find
J,o1—J1=2J, (9)

and 9
Jyo1 + Jpp1 = %Jy. (10)



