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Lecture XVI

Strum comparison theorem, Orthogonality of Bessel functions

1 Normal form of second order homogeneous linear ODE

Consider a second order linear ODE in the standard form
y' +p(@)y +q(z)y = 0. (1)

By a change of dependent variable, (1) can be written as
v+ Q(x)u =0, (2)

which is called the normal form of (1).

To find the transformation, let use put y(z) = u(x)v(z). When this is substituted in
(1), we get
vu” 4+ (20" + po)u’ + (V" + pv’ + qu)u = 0.

Now we set the coefficient of u’ to zero. This gives
W +pu=0=v=e Jr/2d

Now coeflicient of v becomes
1 1

(q(z) — sz - 2p’> v=Q(z)v.

Since v is nonzero, cancelling v we get the required normal form. Also, since v never
vanishes, v vanishes if and only if y vanishes. Thus, the above transformation has no
effect on the zeros of solution.

Example 1. Consider the Bessel equation of order v > 0:

22y +ay + (22— 1)y =0, x> 0.

Solution: Here v = e~ J #/2% — 1/y/x. Now

V2 1 1 1/4 — v?
=l-——-—4+-—=14+4———.
Q) x?  4a? i 2x2 * x?
Thus, Bessel equation in normal form becomes
1/4 — 12
u”+<1—i—/2y>u:0. (3)
x

Theorem 1. (Strum comparison theorem) Let ¢ and 1) be nontrivial solutions of
y" +plx)y =0, z €T,

and
v+ q(z)y =0, reT,

where p and q are continuous and p < q on L. Then between any two consecutive zeros
x1 and xo of ¢, there exists at least one zero of ¥ unless p = q on (x1, 3).
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Proof: Consider z; and zy with 27 < z5. WLOG, assume that ¢ > 0 in (21, x2).
Then ¢'(z1) > 0 and ¢'(z2) < 0. Further, suppose on the contrary that ¢ has no zero
on (x1,x3). Assume that ¢ > 0 in (21, 22). Since ¢ and v are solutions of the above
equations, we must have

¢" +p(x)d =0,
'+ q(x)y =0.
Now multiply first of these by 1 and second by ¢ and subtracting we find

d
dvf = (¢ —p)ov,

where W = ¢/ — )¢’ is the Wronskian of ¢ and . Integrating between x; and x5, we

find 2
Wiaa) = Wia) = [ (g = p)owda.

Now W(xe) < 0 and W(x;) > 0. Hence, the left hand side W (xzy) — W(z1) < 0. On
the other hand, right hand side is strictly greater than zero unless p = g on (x1, x3).
This contradiction proves that between any two consecutive zeros x; and x5 of ¢, there
exists at least one zero of 1 unless p = ¢ on (z1, z3).

Proposition 1. Bessel function of first kind J, (v > 0) has infinitely number of
POSItive Zeros.

Proof: The number of zeros J, is the same as that of nontrivial u that satisfies (3),

le.
1/4 —v?
Now for large enough x, say xg, we have
1/4 —v? 1
(1 + /962) >3 € (m00) (5)
Now compare (4) with
v+ 1v =0 (6)
1 :

Due to (5), between any two zeros of a nontrivial solution of (6) in (z, 00), there exists
at least one zero of nontrivial solution of (4). We know that v = sin(x/2) is a nontrivial
solution of (6), which has infinite number of zeros in (z¢,00). Hence, any nontrivial
solution of (4) has infinite number of zeros in (x,00). Thus, J, has infinite number of
zeros in (xg,00), i.e. J, has infinitely number of positive zeros. We label the positive
zeros of J, by A, thus J,(\,) =0forn=1,2,3,---.

2 Orthogonality of Bessel function J,
Proposition 2. (Orthogonality) The Bessel functions J, (v > 0) satisfy

2

[ O ) d = 3 (1 O)) (7)

where \; are the positive zeros of J,, and 6y, = 0 for m #n and 6,y = 1 for m = n.
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Proof: We know that J,(x) satisfies

/" 1/ y2
y+-y+({l—-——5]y=0
T T

If w=J,(\x) and v = J,(pz), then u and v satisfies

1 2
u"—l—;u'+ ()\2— ;) u=0, (8)
and
L2
V" + v'+<2—a:2>v—0 (9)
Multiplying (8) by v and (9) by u and subtracting, we find
d
. {x(u’v — uv’)} = (,u2 — >\2) Tuv. (10)
x

Integrating from x = 0 to x = 1, we find

(/L2 — )\2) /01 zuvdr = u'(1)v(1) — u(1)v'(1).

Now u(1) = J,(A\) and v(1) = J,(u). Let us choose A = \,,, and p = \,,, where A, and
A are positive zeros of J,. Then u(1) = v(1) = 0 and thus find

1
(A2 = )\2) / 2Jy i) Jy (M) dz = 0.
0

If n # m, then
1
/ zJy(Amx)J,(Anz) dz = 0.
0

Now from (10), we find [since v'(z) = AJ(Azx) etc]

jx {m()\J{,(}\x)Jy(um) — ,uJV(/\m)J;(ux)ﬂ = <u2 — )\2> zJ,(A\x)J, (ux).

We differentiate this with respect to p and then put © = A. This leads to

22z, (Az)J,(\x) = CZ; 2 (zAT, ()T, (A\x) = J,(A2) T, (Ax) — 2\, (Ax) T (Ax) )|

Integrating between x = 0 to x = 1, we find
1
2 / rl2(Oa)dr = MTLN) = LV = AL AL
0

OR

/01 v J*(\r) dx = ;J{,(A)Q - Jyé)\) (J'///(\A) + J{,’(A))

[This last relation can be written as (NOT needed for the proof!)

/01 2 J2(\a) da = ;J,L()\)Q + ; (1 - ii) T2(\) ]
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Now if we take A = \,,, where \, is a positive zero of J,, then we find
1 1 2
2 _ /
/0 22 (Ap) dz = 2(JV(/\n)) .

Now . y
(277 0u(@)) = =2 (@) = T (@) = — () = =S (@),
we find by substituting z = A,
Jz//(/\n> = _JV+1(/\7L>-
Thus, finally we get
1 1
/ 2 J2(Onz) dz = = J2. ().

0 2 v+1

Theorem 2. (Fourier-Bessel series) Suppose a function f is defined in the interval
0 < x <1 and that it has a Fourier-Bessel series expansion.:

f(x) ~ Z cndy(Aun),
n=1
where \,, are the positive zeros of J,. Using orthogonality, we find

Cn

9 1
= JVQH(/\W)/O zf(z)J,(Anx) de.

Suppose that [ and f' are piecewise continuous on the interval 0 < x < 1. Then for
0<z <1,

o0 f(z), where [ is continuous
z:l cndy(Avn) = fla™) + f(z")
n= 9 5

where f is discontinuous

At x = 0, it converges to zero for v > 0 and to f(0+) for v = 0. On the other hand,
1t converges to zero at x = 1.



