Lecture XVI

Strum comparison theorem, Orthogonality of Bessel functions

1 Normal form of second order homogeneous linear ODE

Consider a second order linear ODE in the standard form

$$y'' + p(x)y' + q(x)y = 0.$$
 (1)

By a change of dependent variable, (1) can be written as

$$u'' + Q(x)u = 0, (2)$$

which is called the normal form of (1).

To find the transformation, let use put y(x) = u(x)v(x). When this is substituted in (1), we get

$$vu'' + (2v' + pv)u' + (v'' + pv' + qv)u = 0.$$

Now we set the coefficient of u' to zero. This gives

$$2v' + pv = 0 \Rightarrow v = e^{-\int p/2 \, dx}.$$

Now coefficient of u becomes

$$\left(q(x) - \frac{1}{4}p^2 - \frac{1}{2}p'\right)v = Q(x)v.$$

Since v is nonzero, cancelling v we get the required normal form. Also, since v never vanishes, u vanishes if and only if y vanishes. Thus, the above transformation has no effect on the zeros of solution.

Example 1. Consider the Bessel equation of order $\nu \geq 0$:

$$x^{2}y'' + xy' + (x^{2} - \nu^{2})y = 0, \qquad x > 0.$$

Solution: Here $v = e^{-\int x/2 dx} = 1/\sqrt{x}$. Now

$$Q(x) = 1 - \frac{\nu^2}{x^2} - \frac{1}{4x^2} + \frac{1}{2x^2} = 1 + \frac{1/4 - \nu^2}{x^2}.$$

Thus, Bessel equation in normal form becomes

$$u'' + \left(1 + \frac{1/4 - \nu^2}{x^2}\right)u = 0. (3)$$

Theorem 1. (Strum comparison theorem) Let ϕ and ψ be nontrivial solutions of

$$y'' + p(x)y = 0, x \in \mathcal{I},$$

and

$$y'' + q(x)y = 0, x \in \mathcal{I},$$

where p and q are continuous and $p \leq q$ on \mathcal{I} . Then between any two consecutive zeros x_1 and x_2 of ϕ , there exists at least one zero of ψ unless $p \equiv q$ on (x_1, x_2) .

Proof: Consider x_1 and x_2 with $x_1 < x_2$. WLOG, assume that $\phi > 0$ in (x_1, x_2) . Then $\phi'(x_1) > 0$ and $\phi'(x_2) < 0$. Further, suppose on the contrary that ψ has no zero on (x_1, x_2) . Assume that $\psi > 0$ in (x_1, x_2) . Since ϕ and ψ are solutions of the above equations, we must have

$$\phi'' + p(x)\phi = 0,$$

$$\psi'' + q(x)\psi = 0.$$

Now multiply first of these by ψ and second by ϕ and subtracting we find

$$\frac{dW}{dx} = (q - p)\phi\psi,$$

where $W = \phi \psi' - \psi \phi'$ is the Wronskian of ϕ and ψ . Integrating between x_1 and x_2 , we find

$$W(x_2) - W(x_1) = \int_{x_1}^{x_2} (q - p)\phi\psi \, dx.$$

Now $W(x_2) \leq 0$ and $W(x_1) \geq 0$. Hence, the left hand side $W(x_2) - W(x_1) \leq 0$. On the other hand, right hand side is strictly greater than zero unless $p \equiv q$ on (x_1, x_2) . This contradiction proves that between any two consecutive zeros x_1 and x_2 of ϕ , there exists at least one zero of ψ unless $p \equiv q$ on (x_1, x_2) .

Proposition 1. Bessel function of first kind J_v ($\nu \geq 0$) has infinitely number of positive zeros.

Proof: The number of zeros J_{ν} is the same as that of nontrivial u that satisfies (3), i.e.

$$u'' + \left(1 + \frac{1/4 - \nu^2}{x^2}\right)u = 0. (4)$$

Now for large enough x, say x_0 , we have

$$\left(1 + \frac{1/4 - \nu^2}{x^2}\right) > \frac{1}{4}, \quad x \in (x_0, \infty).$$
 (5)

Now compare (4) with

$$v'' + \frac{1}{4}v = 0. (6)$$

Due to (5), between any two zeros of a nontrivial solution of (6) in (x_0, ∞) , there exists at least one zero of nontrivial solution of (4). We know that $v = \sin(x/2)$ is a nontrivial solution of (6), which has infinite number of zeros in (x_0, ∞) . Hence, any nontrivial solution of (4) has infinite number of zeros in (x_0, ∞) . Thus, J_{ν} has infinite number of zeros in (x_0, ∞) , i.e. J_{ν} has infinitely number of positive zeros. We label the positive zeros of J_{ν} by λ_n , thus $J_{\nu}(\lambda_n) = 0$ for $n = 1, 2, 3, \cdots$.

2 Orthogonality of Bessel function J_{ν}

Proposition 2. (Orthogonality) The Bessel functions J_{ν} ($\nu \geq 0$) satisfy

$$\int_0^1 x J_{\nu}(\lambda_m x) J_{\nu}(\lambda_n x) dx = \frac{1}{2} \left(J_{\nu+1}(\lambda_n) \right)^2 \delta_{mn}, \tag{7}$$

where λ_i are the positive zeros of J_{ν} , and $\delta_{mn} = 0$ for $m \neq n$ and $\delta_{mn} = 1$ for m = n.

Proof: We know that $J_{\nu}(x)$ satisfies

$$y'' + \frac{1}{x}y' + \left(1 - \frac{\nu^2}{x^2}\right)y = 0.$$

If $u = J_{\nu}(\lambda x)$ and $v = J_{\nu}(\mu x)$, then u and v satisfies

$$u'' + \frac{1}{x}u' + \left(\lambda^2 - \frac{\nu^2}{x^2}\right)u = 0, (8)$$

and

$$v'' + \frac{1}{x}v' + \left(\mu^2 - \frac{\nu^2}{x^2}\right)v = 0.$$
 (9)

Multiplying (8) by v and (9) by u and subtracting, we find

$$\frac{d}{dx}\left[x(u'v - uv')\right] = \left(\mu^2 - \lambda^2\right)xuv. \tag{10}$$

Integrating from x = 0 to x = 1, we find

$$\left(\mu^2 - \lambda^2\right) \int_0^1 x u v \, dx = u'(1)v(1) - u(1)v'(1).$$

Now $u(1) = J_{\nu}(\lambda)$ and $v(1) = J_{\nu}(\mu)$. Let us choose $\lambda = \lambda_m$ and $\mu = \lambda_n$, where λ_m and λ_n are positive zeros of J_{ν} . Then u(1) = v(1) = 0 and thus find

$$(\lambda_n^2 - \lambda_m^2) \int_0^1 x J_{\nu}(\lambda_m x) J_{\nu}(\lambda_n x) dx = 0.$$

If $n \neq m$, then

$$\int_0^1 x J_{\nu}(\lambda_m x) J_{\nu}(\lambda_n x) dx = 0.$$

Now from (10), we find [since $u'(x) = \lambda J'_{\nu}(\lambda x)$ etc]

$$\frac{d}{dx} \left[x \left(\lambda J_{\nu}'(\lambda x) J_{\nu}(\mu x) - \mu J_{\nu}(\lambda x) J_{\nu}'(\mu x) \right) \right] = \left(\mu^2 - \lambda^2 \right) x J_{\nu}(\lambda x) J_{\nu}(\mu x).$$

We differentiate this with respect to μ and then put $\mu = \lambda$. This leads to

$$2\lambda x J_{\nu}(\lambda x) J_{\nu}(\lambda x) = \frac{d}{dx} \left[x \left(x \lambda J_{\nu}'(\lambda x) J_{\nu}'(\lambda x) - J_{\nu}(\lambda x) J_{\nu}'(\lambda x) - x \lambda J_{\nu}(\lambda x) J_{\nu}''(\lambda x) \right) \right]$$

Integrating between x = 0 to x = 1, we find

$$2\lambda \int_0^1 x J_{\nu}^2(\lambda x) dx = \lambda \left(J_{\nu}'(\lambda)\right)^2 - J_{\nu}(\lambda) J_{\nu}'(\lambda) - \lambda J_{\nu}(\lambda) J_{\nu}''(\lambda).$$

OR

$$\int_0^1 x J_{\nu}^2(\lambda x) \, dx = \frac{1}{2} J_{\nu}'(\lambda)^2 - \frac{J_{\nu}(\lambda)}{2} \left(\frac{J_{\nu}'(\lambda)}{\lambda} + J_{\nu}''(\lambda) \right)$$

This last relation can be written as (NOT needed for the proof!)

$$\int_0^1 x J_{\nu}^2(\lambda x) \, dx = \frac{1}{2} J_{\nu}'(\lambda)^2 + \frac{1}{2} \left(1 - \frac{\nu^2}{\lambda^2} \right) J_{\nu}^2(\lambda)$$

Now if we take $\lambda = \lambda_n$, where λ_n is a positive zero of J_{ν} , then we find

$$\int_0^1 x J_\nu^2(\lambda_n x) dx = \frac{1}{2} \left(J_\nu'(\lambda_n) \right)^2.$$

Now

$$(x^{-\nu}J_{\nu}(x))' = -x^{-\nu}J_{\nu+1}(x) \Rightarrow J'_{\nu}(x) - \frac{\nu}{x}J_{\nu}(x) = -J_{\nu+1}(x),$$

we find by substituting $x = \lambda_n$

$$J_{\nu}'(\lambda_n) = -J_{\nu+1}(\lambda_n).$$

Thus, finally we get

$$\int_0^1 x J_{\nu}^2(\lambda_n x) \, dx = \frac{1}{2} J_{\nu+1}^2(\lambda_n).$$

Theorem 2. (Fourier-Bessel series) Suppose a function f is defined in the interval $0 \le x \le 1$ and that it has a Fourier-Bessel series expansion:

$$f(x) \sim \sum_{n=1}^{\infty} c_n J_{\nu}(\lambda_{\nu n} x),$$

where $\lambda_{\nu n}$ are the positive zeros of J_{ν} . Using orthogonality, we find

$$c_n = \frac{2}{J_{\nu+1}^2(\lambda_{\nu n})} \int_0^1 x f(x) J_{\nu}(\lambda_{\nu n} x) dx.$$

Suppose that f and f' are piecewise continuous on the interval $0 \le x \le 1$. Then for 0 < x < 1,

$$\sum_{n=1}^{\infty} c_n J_{\nu}(\lambda_{\nu n} x) = \begin{cases} f(x), & \text{where } f \text{ is continuous} \\ \frac{f(x^-) + f(x^+)}{2}, & \text{where } f \text{ is discontinuous} \end{cases}$$

At x = 0, it converges to zero for $\nu > 0$ and to f(0+) for $\nu = 0$. On the other hand, it converges to zero at x = 1.