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Lecture XVI
Strum comparison theorem, Orthogonality of Bessel functions

1 Normal form of second order homogeneous linear ODE

Consider a second order linear ODE in the standard form

y′′ + p(x)y′ + q(x)y = 0. (1)

By a change of dependent variable, (1) can be written as

u′′ +Q(x)u = 0, (2)

which is called the normal form of (1).

To find the transformation, let use put y(x) = u(x)v(x). When this is substituted in
(1), we get

vu′′ + (2v′ + pv)u′ + (v′′ + pv′ + qv)u = 0.

Now we set the coefficient of u′ to zero. This gives

2v′ + pv = 0⇒ v = e−
∫
p/2 dx.

Now coefficient of u becomes(
q(x)− 1

4
p2 − 1

2
p′
)
v = Q(x)v.

Since v is nonzero, cancelling v we get the required normal form. Also, since v never
vanishes, u vanishes if and only if y vanishes. Thus, the above transformation has no
effect on the zeros of solution.

Example 1. Consider the Bessel equation of order ν ≥ 0:

x2y′′ + xy′ + (x2 − ν2)y = 0, x > 0.

Solution: Here v = e−
∫
x/2 dx = 1/

√
x. Now

Q(x) = 1− ν2

x2
− 1

4x2
+

1

2x2
= 1 +

1/4− ν2

x2
.

Thus, Bessel equation in normal form becomes

u′′ +

(
1 +

1/4− ν2

x2

)
u = 0. (3)

Theorem 1. (Strum comparison theorem) Let φ and ψ be nontrivial solutions of

y′′ + p(x)y = 0, x ∈ I,

and
y′′ + q(x)y = 0, x ∈ I,

where p and q are continuous and p ≤ q on I. Then between any two consecutive zeros
x1 and x2 of φ, there exists at least one zero of ψ unless p ≡ q on (x1, x2).
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Proof: Consider x1 and x2 with x1 < x2. WLOG, assume that φ > 0 in (x1, x2).
Then φ′(x1) > 0 and φ′(x2) < 0. Further, suppose on the contrary that ψ has no zero
on (x1, x2). Assume that ψ > 0 in (x1, x2). Since φ and ψ are solutions of the above
equations, we must have

φ′′ + p(x)φ = 0,

ψ′′ + q(x)ψ = 0.

Now multiply first of these by ψ and second by φ and subtracting we find

dW

dx
= (q − p)φψ,

where W = φψ′−ψφ′ is the Wronskian of φ and ψ. Integrating between x1 and x2, we
find

W (x2)−W (x1) =
∫ x2

x1

(q − p)φψ dx.

Now W (x2) ≤ 0 and W (x1) ≥ 0. Hence, the left hand side W (x2) −W (x1) ≤ 0. On
the other hand, right hand side is strictly greater than zero unless p ≡ q on (x1, x2).
This contradiction proves that between any two consecutive zeros x1 and x2 of φ, there
exists at least one zero of ψ unless p ≡ q on (x1, x2).

Proposition 1. Bessel function of first kind Jv (ν ≥ 0) has infinitely number of
positive zeros.

Proof: The number of zeros Jν is the same as that of nontrivial u that satisfies (3),
i.e.

u′′ +

(
1 +

1/4− ν2

x2

)
u = 0. (4)

Now for large enough x, say x0, we have(
1 +

1/4− ν2

x2

)
>

1

4
, x ∈ (x0,∞). (5)

Now compare (4) with

v′′ +
1

4
v = 0. (6)

Due to (5), between any two zeros of a nontrivial solution of (6) in (x0,∞), there exists
at least one zero of nontrivial solution of (4). We know that v = sin(x/2) is a nontrivial
solution of (6), which has infinite number of zeros in (x0,∞). Hence, any nontrivial
solution of (4) has infinite number of zeros in (x0,∞). Thus, Jν has infinite number of
zeros in (x0,∞), i.e. Jν has infinitely number of positive zeros. We label the positive
zeros of Jν by λn, thus Jν(λn) = 0 for n = 1, 2, 3, · · ·.

2 Orthogonality of Bessel function Jν

Proposition 2. (Orthogonality) The Bessel functions Jν (ν ≥ 0) satisfy∫ 1

0
xJν(λmx)Jν(λnx) dx =

1

2

(
Jν+1(λn)

)2
δmn, (7)

where λi are the positive zeros of Jν , and δmn = 0 for m 6= n and δmn = 1 for m = n.
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Proof: We know that Jν(x) satisfies

y′′ +
1

x
y′ +

(
1− ν2

x2

)
y = 0.

If u = Jν(λx) and v = Jν(µx), then u and v satisfies

u′′ +
1

x
u′ +

(
λ2 − ν2

x2

)
u = 0, (8)

and

v′′ +
1

x
v′ +

(
µ2 − ν2

x2

)
v = 0. (9)

Multiplying (8) by v and (9) by u and subtracting, we find

d

dx

[
x(u′v − uv′)

]
=
(
µ2 − λ2

)
xuv. (10)

Integrating from x = 0 to x = 1, we find(
µ2 − λ2

) ∫ 1

0
xuv dx = u′(1)v(1)− u(1)v′(1).

Now u(1) = Jν(λ) and v(1) = Jν(µ). Let us choose λ = λm and µ = λn, where λm and
λn are positive zeros of Jν . Then u(1) = v(1) = 0 and thus find

(λ2
n − λ2

m)
∫ 1

0
xJν(λmx)Jν(λnx) dx = 0.

If n 6= m, then ∫ 1

0
xJν(λmx)Jν(λnx) dx = 0.

Now from (10), we find [since u′(x) = λJ ′ν(λx) etc]

d

dx

[
x
(
λJ ′ν(λx)Jν(µx)− µJν(λx)J ′ν(µx)

)]
=
(
µ2 − λ2

)
xJν(λx)Jν(µx).

We differentiate this with respect to µ and then put µ = λ. This leads to

2λxJν(λx)Jν(λx) =
d

dx

[
x
(
xλJ ′ν(λx)J ′ν(λx)− Jν(λx)J ′ν(λx)− xλJν(λx)J ′′ν (λx)

)]
Integrating between x = 0 to x = 1, we find

2λ
∫ 1

0
xJ2

ν (λx) dx = λ
(
J ′ν(λ)

)2
− Jν(λ)J ′ν(λ)− λJν(λ)J ′′ν (λ).

OR ∫ 1

0
xJ2

ν (λx) dx =
1

2
J ′ν(λ)2 − Jν(λ)

2

(
J ′ν(λ)

λ
+ J ′′ν (λ)

)

[This last relation can be written as (NOT needed for the proof!)

∫ 1

0
xJ2

ν (λx) dx =
1

2
J ′ν(λ)2 +

1

2

(
1− ν2

λ2

)
J2
ν (λ) ]
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Now if we take λ = λn, where λn is a positive zero of Jν , then we find∫ 1

0
xJ2

ν (λnx) dx =
1

2

(
J ′ν(λn)

)2
.

Now (
x−νJν(x)

)′
= −x−νJν+1(x)⇒ J ′ν(x)− ν

x
Jν(x) = −Jν+1(x),

we find by substituting x = λn

J ′ν(λn) = −Jν+1(λn).

Thus, finally we get ∫ 1

0
xJ2

ν (λnx) dx =
1

2
J2
ν+1(λn).

Theorem 2. (Fourier-Bessel series) Suppose a function f is defined in the interval
0 ≤ x ≤ 1 and that it has a Fourier-Bessel series expansion:

f(x) ∼
∞∑
n=1

cnJν(λνnx),

where λνn are the positive zeros of Jν. Using orthogonality, we find

cn =
2

J2
ν+1(λνn)

∫ 1

0
xf(x)Jν(λνnx) dx.

Suppose that f and f ′ are piecewise continuous on the interval 0 ≤ x ≤ 1. Then for
0 < x < 1,

∞∑
n=1

cnJν(λνnx) =


f(x), where f is continuous

f(x−) + f(x+)

2
, where f is discontinuous

At x = 0, it converges to zero for ν > 0 and to f(0+) for ν = 0. On the other hand,
it converges to zero at x = 1.


