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Lecture XVII
Laplace Transform, inverse Laplace Transform, Existence and Properties of Laplace

Transform

1 Introduction

Differential equations, whether ordinary or partial, describe the ways certain quantities
of interest vary over time. These equations are generally coupled with initial conditions
at time t = 0 and boundary conditions.

Laplace transform is a powerful technique to solve differential equations. It transforms
an IVP in ODE to algebraic equations. The solution of the algebraic equations is than
back-transformed to the original problem. In case of PDE, it can be applied to any
independent variable x, y, z and t that varies from 0 to ∞. After applying Laplace
transform, the original PDE becomes a new PDE with one less independent variable or
an ODE. The resulting problem can be solved by other method (such as separation of
variables, another transform) and the solution is again back-transformed to the original
problem.

2 Laplace transform

Let a function f be defined for t ≥ 0. We define the Laplace transform of f , denoted

by F (s) or L
(
f(t)

)
, as

F (s) = L
(
f(t)

)
=

∫ ∞
0

e−stf(t) dt, (1)

for those s for which the integral in (1) exists. We also refer f(t) as the inverse Laplace
transform of F (s) and we write

f(t) = L−1
(
F (s)

)
.

Comment 1: Laplace transform is defined for complex valued function f(t) and the
parameter s can also be complex. But we restrict our discussion only for the case in
which f(t) is real valued and s is real.
Comment 2: Since the integral in (1) is an improper integral, existence of Laplace
transform implies that the following limit exists:

F (s) =

∫ ∞
0

e−stf(t) dt = lim
A→∞

∫ A

0

e−stf(t) dt.

Example 1. Consider the function defined by

f(t) =

{
0, 0 ≤ t < a,
1, t > a.
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Now

F (s) =

∫ ∞
0

e−stf(t) dt

=

∫ ∞
a

e−st dt

=
e−as

s
, s > 0.

Example 2. Consider f(t) = ta, a > −1. Now

F (s) =

∫ ∞
0

e−stta dt

=
1

sa+1

∫ ∞
0

e−uua+1−1 du

=
Γ(a+ 1)

sa+1
, s > 0.

Hence F (1) = 1/s; F (t) = 1/s2; F (tn) = n!/sn+1, where n is nonnegative integer.

Example 3. Consider f(t) = eat. Now

F (s) =

∫ ∞
0

e−steat dt

=

∫ ∞
0

e−(s−a)t dt

=
1

s− a
, s > a.

Example 4. Consider f(t) = cos(ωt). Using∫
cos(at)ebt dt =

ebt

a2 + b2

(
b cos(at) + a sin(at)

)

F (s) =

∫ ∞
0

e−st cos(ωt) dt

=
s

s2 + ω2
, s > 0.

Example 5. Consider f(t) = sin(ωt). Using∫
sin(at)ebt dt =

ebt

a2 + b2

(
b sin(at)− a cos(at)

)

F (s) =

∫ ∞
0

e−st sin(ωt) dt

=
ω

s2 + ω2
, s > 0.
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2.1 Existence of Laplace transform

We give sufficient condition for the existence of LT. We need the concept of piecewise
continuous function.

Definition 1. (Piecewise continuous function) A function f is piecewise contin-
uous on the interval [a, b] if
(i) The interval [a, b] can be broken into a finite number of subintervals a = t0 <
t1 < t2 < · · · < tn = b, such that f is continuous in each subinterval (ti, ti+1), for
i = 0, 1, 2, · · · , n− 1
(ii) The function f has jump discontinuity at ti, thus∣∣∣∣∣ limt→t+i

f(t)

∣∣∣∣∣ <∞, i = 0, 1, 2, · · · , n− 1;

∣∣∣∣∣ limt→t−i
f(t)

∣∣∣∣∣ <∞, i = 1, 2, 3, · · · , n.

Note: A function is piecewise continuous on [0,∞) if it is piecewise continuous in
[0, A] for all A > 0

Example 6. The function defined by

f(t) =


t2, 0 ≤ t ≤ 1,

3− t, 1 < t ≤ 2,
t+ 1, 2 < t ≤ 3,

is piecewise continuous on [0, 3]

Example 7. The function defined by

f(t) =


1

2− t
, 0 ≤ t < 2,

t+ 1, 2 ≤ t ≤ 3,

is NOT piecewise continuous on [0, 3]

Definition 2. (Exponential order) A function f is said to be of exponential order
if there exist constants M and c such that

|f(t)| ≤Mect for sufficiently large t.

Example 8. Any polynomial is of exponential order. This is clear from the fact that

eat =
∞∑
n=0

tnan

n!
≥ tnan

n!
=⇒ tn ≤ n!

an
eat

But f(t) = et
2

is not of exponential order.

Sufficient condition for the existence of Laplace transform: Let f be a piece-
wise continuous function in [0,∞) and is of exponential order. Then Laplace transform
F (s) of f exists for s > c, where c is a real number that depends on f .
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Proof: Since f is of exponential order, there exists A,M, c such that

|f(t)| ≤Mect for t ≥ A.

Now we write

I =

∫ ∞
0

f(t)e−st dt = I1 + I2,

where

I1 =

∫ A

0

f(t)e−st dt and I2 =

∫ ∞
A

f(t)e−st.

Since f is piecewise continuous, I1 exists. For the second integral I2, we note that for
t ≥ A

|e−stf(t)| ≤Me−(s−c)t.

Thus ∫ ∞
A

|f(t)e−st| dt ≤M

∫ ∞
A

e−(s−c)t dt ≤M

∫ ∞
0

e−(s−c)t dt =
M

s− c
, s > c.

Since the integral in I2 converges absolutely for s > c, I2 converges for s > c. Thus,
both I1 and I2 exist and hence I exists for s > c.

Comment The above condition is not necessary. For example, consider f(t) = 1/
√
t,

which is not piecewise continuous in [0,∞). But∫ ∞
0

e−st√
t

=
1√
s

∫ ∞
0

e−uu1/2−1 du =
Γ(1/2)√

s
=

√
π

s
, s > 0.

3 Basic properties of Laplace transform

Theorem 1. (Uniqueness of Laplace transform) Let f(t) and g(t) be two functions
such that F (s) = G(s) for all s > k. Then f(t) = g(t) at all t where both are
continuous.

Proposition 1. (Linearity) Suppose F1(s) = L
(
f1(t)

)
exists for s > a1 and F2(s) =

L
(
f2(t)

)
exists for s > a2. Then

L
(
c1f1(t) + c2f2(t)

)
= c1F1(s) + c2F2(s),

for s > a, where a = max{a1, a2}.

Proof: Trivial

Example 9. Consider f(t) = cosh(ωt). Then

L
(

cosh(ωt)
)

=
1

2

(
L(eωt) + L(e−ωt)

)
=

1

2

(
1

s− ω
+

1

s+ ω

)
=

s

s2 − ω2
.

Example 10. Consider f(t) = sinh(ωt). Proceeding as above, we find

F (s) = ω/(s2 − ω2)
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Theorem 2. (First shifting theorem) If L
(
f(t)

)
= F (s), then

L
(
eatf(t)

)
= F (s− a), and eatf(t) = L−1

(
F (s− a)

)
.

Proof: Suppose L
(
f(t)

)
= F (s) holds for s > k. Now

L
(
eatf(t)

)
=

∫ ∞
0

e−steatf(t) dt =

∫ ∞
0

e−(s−a)tf(t) dt = F (s− a), s− a > k.

Example 11. Consider f(t) = e−5t cos(4t). Since

L
(

cos(4t)
)

=
s

s2 + 16
=⇒ L

(
e−5t cos(4t)

)
=

s+ 5

(s+ 5)2 + 16

Proposition 2. If L
(
f(t)

)
= F (s), then F (s)→ 0 as s→∞.

Proof: We prove this for a piecewise continuous function which is of exponential order.
But the result is valid for any function for which Laplace transform exists. Now

I =

∫ ∞
0

e−stf(t) dt =⇒ |I| ≤
∫ ∞

0

e−st|f(t)| dt.

Now since the function is exponential order, there exists M,α,A such that |f(t)| ≤
M1e

αt for t ≥ A. Also, since the function is piecewise continuous in [0, A], we must
have |f(t)| ≤ M2e

βt for 0 ≤ t ≤ A except possibly at some finite number of points
where f(t) is not defined. Now we take M = max{M1,M2} and γ = max{α, β}. Then
we have

|F (s)| = |I| ≤
∫ ∞

0

e−st|f(t)| dt ≤M

∫ ∞
0

e−(s−γ)t dt =
M

s− γ
, s > γ.

Thus, F (s)→ 0 as s→∞.
Comment: Any function F (s) without this behaviour can not be Laplace transform
of a certain function. For example, s/(s−1), sin s, s2/(1+s2) are not Laplace transform
of any function.


