Lecture III Solution of first order equations

1 Separable equations

These are equations of the form

$$y' = f(x)g(y)$$

Assuing g is nonzero, we divide by g and integrate to find

$$\int \frac{dy}{g(y)} = \int f(x)dx + C$$

What happens if g(y) becomes zero at a point $y = y_0$?

Example 1. $xy' = y + y^2$

Solution: We write this as

$$\int \frac{dy}{y+y^2} = \int \frac{dx}{x} + C \Rightarrow \int \frac{dy}{y} - \int \frac{dy}{1+y} = \ln x + C \Rightarrow \ln y - \ln(1+y) = \ln x + C$$

Note: Strictly speaking, we should write the above solution as

$$ln |y| - ln |1 + y| = ln |x| + C$$

When we wrote the solution without the modulas sign, it was (implicitly) assumed that x > 0, y > 0. This is acceptable for problems in which the solution domain is not given explicitly. But for some problems, the modulas sign is necessary. For example, consider the following IVP:

$$xy' = y + y^2, \quad y(-1) = -2.$$

Try to solve this.

2 Reduction to separable form

2.1 Substitution method

Let the ODE be

$$y' = F(ax + by + c)$$

Suppose $b \neq 0$. Substituting ax + by + c = v reduces the equation to a separable form. If b = 0, then it is already in separable form.

Example 2. $y' = (x + y)^2$

Solution: Let v = x + y. Then we find

$$v' = v^2 + 1 \Rightarrow \tan^{-1} v = x + C \Rightarrow x + y = \tan(x + C)$$

2.2 Homogeneous form

Let the ODE be of the form

$$y' = f(y/x)$$

In this case, substitution of v = y/x reduces the above ODE to a seprable ODE.

Comment 1: Sometimes, substitution reduces an ODE to the homogeneous form. For example, if $ae \neq bd$, then h and k can be chosen so that x = u + h and y = v + k reduces the following ODE

$$y' = F\left(\frac{ax + by + c}{dx + ey + f}\right)$$

to a homeogeneous ODE. What happens if ae = bd?

Comment 2: Also, an ODE of the form

$$y' = y/x + g(x)h(y/x)$$

can be reduced to the separable form by substituting v = y/x.

Example 3.
$$xyy' = y^2 + 2x^2$$
, $y(1) = 2$

Solution: Substituting v = y/x we find

$$v + xv' = v + 2/v \Rightarrow y^2 = 2x^2(C + \ln x^2)$$

Using y(1) = 2, we find C = 2. Hence, $y = 2x^2(1 + \ln x^2)$

3 Exact equation

A first order ODE of the form

$$M(x,y) dx + N(x,y) dy = 0$$
(1)

is exact if there exits a function u(x,y) such that

$$M = \frac{\partial u}{\partial x}$$
 and $N = \frac{\partial u}{\partial y}$.

Then the above ODE can be written as du = 0 and hence the solution becomes u = C.

Theorem 1. Let M and N be defined and continuously differentiable on a rectangle rectangle $R = \{(x,y) : |x - x_0| < a, |y - y_0| < b\}$. Then (1) is exact if and only if $\partial M/\partial y = \partial N/\partial x$ for all $(x,y) \in R$.

Proof: We shall only prove the necessary part. Assume that (1) is exact. Then there exits a function u(x, y) such that

$$M = \frac{\partial u}{\partial x}$$
 and $N = \frac{\partial u}{\partial y}$.

Since M and N have continuous first partial derivatives, we have

$$\frac{\partial M}{\partial y} = \frac{\partial^2 u}{\partial y \partial x}$$
 and $\frac{\partial N}{\partial x} = \frac{\partial^2 u}{\partial x \partial y}$.

Now continuity of 2nd partial derivative implies $\partial M/\partial y = \partial N/\partial x$.

Example 4. Solve $(2x + \sin x \tan y)dx - \cos x \sec^2 y dy = 0$

Solution: Here $M = 2x + \sin x \tan y$ and $N = -\cos x \sec^2 y$. Hence, $M_y = N_x$. Hence, the solution is u = C, where $u = x^2 - \cos x \tan y$

4 Reduction to exact equation: integrating factor

An integrating factor $\mu(x,y)$ is a function such that

$$M(x,y) dx + N(x,y) dy = 0$$
(2)

becomes exact on multiplying it by μ . Thus,

$$\mu M dx + \mu N dy = 0$$

is exact. Hence

$$\frac{\partial (\mu M)}{\partial y} = \frac{\partial (\mu N)}{\partial x}.$$

Comment: If an equation has an integrating factor, then it has infinitely many integrating factors.

Proof: Let μ be an integrating factor. Then

$$\mu M dx + \mu N dy = du$$

Let g(u) be any continuous function of u. Now multiplying by $\mu g(u)$, we find

$$\mu g(u)M dx + \mu g(u)N dy = g(u)du \Rightarrow \mu g(u)M dx + \mu g(u)N dy = d\left(\int_{-\infty}^{\infty} g(u) du\right)$$

Thus,

$$\mu g(u)M dx + \mu g(u)N dy = dv$$
, where $v = \int_{-u}^{u} g(u) du$

Hence, $\mu g(u)$ is an integrating factor. Since, g is arbitrary, there exists an infinite number of integrating factors.

Example 5. xdy - ydx = 0.

Solution: Clearly $1/x^2$ is an integrating factor since

$$\frac{xdy - ydx}{x^2} = 0 \Rightarrow d(y/x) = 0$$

Also, 1/xy is an integrating factor since

$$\frac{xdy - ydx}{xy} = 0 \Rightarrow d\ln(y/x) = 0$$

Similarly it can be shown that $1/y^2$, $1/(x^2+y^2)$ etc. are integrating factors.

4.1 How to find integrating factor

Theorem 2. If (2) is such that

$$\frac{1}{N} \left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right)$$

is a function of x alone, say F(x), then

$$\mu = e^{\int F dx}$$

is a function of x only and is an integrating factor for (2).

Example 6. $(xy - 1)dx + (x^2 - xy)dy = 0$

Solution: Here M = xy - 1 and $N = x^2 - xy$. Also,

$$\frac{1}{N} \left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right) = -\frac{1}{x}$$

Hence, 1/x is an integrting factor. Multiplying by 1/x we find

$$\frac{(xy-1)dx + (x^2 - xy)dy}{x} = 0 \Rightarrow xy - \ln x - y^2/2 = C$$

Theorem 3. If (2) is such that

$$\frac{-1}{M} \left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right)$$

is a function of y alone, say G(y), then

$$\mu = e^{\int G \, dy}$$

is a function of y only and is an integrating factor for (2).

Example 7. $y^3 dx + (xy^2 - 1)dy = 0$

Solution: Here $M = y^3$ and $N = xy^2 - 1$. Also,

$$-\frac{1}{M}\left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}\right) = -\frac{2}{y}$$

Hence, $1/y^2$ is an integrting factor. Multiplying by $1/y^2$ we find

$$\frac{y^3dx + (xy^2 - 1)dy}{y^2} = 0 \Rightarrow xy + \frac{1}{y} = C$$

Comment: Sometimes it may be possible to find integrating factor by inspection. For this, some known differential formulas are useful. Few of these are given below:

$$d\left(\frac{x}{y}\right) = \frac{ydx - xdy}{y^2}$$

$$d\left(\frac{y}{x}\right) = \frac{xdy - ydx}{x^2}$$

$$d(xy) = xdy + ydx$$

$$d\left(\ln\frac{x}{y}\right) = \frac{ydx - xdy}{xy}$$

Example 8. $(2x^2y + y)dx + xdy = 0$

Obviously, we can write this as

$$2x^2ydx + (ydx + xdy) = 0 \Rightarrow 2x^2ydx + d(xy) = 0$$

Now if we divide this by xy, then the last term remains differential and the first term also becomes differential:

$$2xdx + \frac{d(xy)}{xy} = 0 \Rightarrow d\left(x^2 + \ln(xy)\right) = 0 \Rightarrow x^2 + \ln(xy) = C$$