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Lecture III
Solution of first order equations

1 Separable equations

These are equations of the form

y′ = f(x)g(y)

Assuing g is nonzero, we divide by g and integrate to find∫ dy

g(y)
=
∫
f(x)dx+ C

What happens if g(y) becomes zero at a point y = y0?

Example 1. xy′ = y + y2

Solution: We write this as∫ dy

y + y2
=
∫ dx

x
+ C ⇒

∫ dy

y
−
∫ dy

1 + y
= lnx+ C ⇒ ln y − ln(1 + y) = ln x+ C

Note: Strictly speaking, we should write the above solution as

ln |y| − ln |1 + y| = ln |x|+ C

When we wrote the solution without the modulas sign, it was (implicitly) assumed
that x > 0, y > 0. This is acceptable for problems in which the solution domain is not
given explicitly. But for some problems, the modulas sign is necessary. For example,
consider the following IVP:

xy′ = y + y2, y(−1) = −2.

Try to solve this.

2 Reduction to separable form

2.1 Substitution method

Let the ODE be
y′ = F (ax+ by + c)

Suppose b 6= 0. Substituting ax+ by+ c = v reduces the equation to a separable form.
If b = 0, then it is already in separable form.

Example 2. y′ = (x+ y)2

Solution: Let v = x+ y. Then we find

v′ = v2 + 1⇒ tan−1 v = x+ C ⇒ x+ y = tan(x+ C)
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2.2 Homogeneous form

Let the ODE be of the form
y′ = f(y/x)

In this case, substitution of v = y/x reduces the above ODE to a seprable ODE.

Comment 1: Sometimes, substitution reduces an ODE to the homogeneous form. For
example, if ae 6= bd, then h and k can be chosen so that x = u + h and y = v + k
reduces the following ODE

y′ = F

(
ax+ by + c

dx+ ey + f

)
to a homeogeneous ODE. What happens if ae = bd?

Comment 2: Also, an ODE of the form

y′ = y/x+ g(x)h(y/x)

can be reduced to the separable form by substituting v = y/x.

Example 3. xyy′ = y2 + 2x2, y(1) = 2

Solution: Substituting v = y/x we find

v + xv′ = v + 2/v ⇒ y2 = 2x2(C + lnx2)

Using y(1) = 2, we find C = 2. Hence, y = 2x2(1 + ln x2)

3 Exact equation

A first order ODE of the form

M(x, y) dx+N(x, y) dy = 0 (1)

is exact if there exits a function u(x, y) such that

M =
∂u

∂x
and N =

∂u

∂y
.

Then the above ODE can be written as du = 0 and hence the solution becomes u = C.

Theorem 1. Let M and N be defined and continuously differentiable on a rectangle
rectangle R = {(x, y) : |x − x0| < a, |y − y0| < b}. Then (1) is exact if and only if
∂M/∂y = ∂N/∂x for all (x, y) ∈ R.

Proof: We shall only prove the necessary part. Assume that (1) is exact. Then there
exits a function u(x, y) such that

M =
∂u

∂x
and N =

∂u

∂y
.

Since M and N have continuous first partial derivatives, we have

∂M

∂y
=

∂2u

∂y∂x
and

∂N

∂x
=

∂2u

∂x∂y
.

Now continuity of 2nd partial derivative implies ∂M/∂y = ∂N/∂x.
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Example 4. Solve (2x+ sinx tan y)dx− cosx sec2 y dy = 0

Solution: Here M = 2x+sin x tan y and N = − cosx sec2 y. Hence, My = Nx. Hence,
the solution is u = C, where u = x2 − cosx tan y

4 Reduction to exact equation: integrating factor

An integrating factor µ(x, y) is a function such that

M(x, y) dx+N(x, y) dy = 0 (2)

becomes exact on multiplying it by µ. Thus,

µM dx+ µN dy = 0

is exact. Hence
∂(µM)

∂y
=
∂(µN)

∂x
.

Comment: If an equation has an integrating factor, then it has infinitely many inte-
grating factors.

Proof: Let µ be an integrating factor. Then

µM dx+ µN dy = du

Let g(u) be any continuous function of u. Now multiplying by µg(u), we find

µg(u)M dx+ µg(u)N dy = g(u)du⇒ µg(u)M dx+ µg(u)N dy = d
(∫ u

g(u) du
)

Thus,

µg(u)M dx+ µg(u)N dy = dv, whare v =
∫ u

g(u) du

Hence, µg(u) is an integrating factor. Since, g is arbitrary, there exists an infinite
number of integrating factors.

Example 5. xdy − ydx = 0.

Solution: Clearly 1/x2 is an integrating factor since

xdy − ydx
x2

= 0⇒ d(y/x) = 0

Also, 1/xy is an integrating factor since

xdy − ydx
xy

= 0⇒ d ln(y/x) = 0

Similarly it can be shown that 1/y2, 1/(x2 + y2) etc. are integrating factors.
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4.1 How to find intgrating factor

Theorem 2. If (2) is such that

1

N

(
∂M

∂y
− ∂N

∂x

)
is a function of x alone, say F (x), then

µ = e
∫

F dx

is a function of x only and is an integrating factor for (2).

Example 6. (xy − 1)dx+ (x2 − xy)dy = 0

Solution: Here M = xy − 1 and N = x2 − xy. Also,

1

N

(
∂M

∂y
− ∂N

∂x

)
= −1

x

Hence, 1/x is an integrting factor. Multiplying by 1/x we find

(xy − 1)dx+ (x2 − xy)dy

x
= 0⇒ xy − lnx− y2/2 = C

Theorem 3. If (2) is such that

−1

M

(
∂M

∂y
− ∂N

∂x

)
is a function of y alone, say G(y), then

µ = e
∫

G dy

is a function of y only and is an integrating factor for (2).

Example 7. y3dx+ (xy2 − 1)dy = 0

Solution: Here M = y3 and N = xy2 − 1. Also,

− 1

M

(
∂M

∂y
− ∂N

∂x

)
= −2

y

Hence, 1/y2 is an integrting factor. Multiplying by 1/y2 we find

y3dx+ (xy2 − 1)dy

y2
= 0⇒ xy +

1

y
= C

Comment: Sometimes it may be possible to find integrating factor by inspection. For
this, some known differential formulas are useful. Few of these are given below:

d

(
x

y

)
=

ydx− xdy
y2

d
(
y

x

)
=

xdy − ydx
x2

d(xy) = xdy + ydx

d

(
ln
x

y

)
=

ydx− xdy
xy
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Example 8. (2x2y + y)dx+ xdy = 0

Obviously, we can write this as

2x2ydx+ (ydx+ xdy) = 0⇒ 2x2ydx+ d(xy) = 0

Now if we divide this by xy, then the last term remains differential and the first term
also becomes differential:

2xdx+
d(xy)

xy
= 0⇒ d

(
x2 + ln(xy)

)
= 0⇒ x2 + ln(xy) = C


