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Lecture IV
Linear equations, Bernoulli equations, Orthogonal trajectories, Oblique trajectories

1 Linear equations

A first order linear equations is of the form

y′ + p(x)y = r(x) (1)

This can be written as
(p(x)y − r(x))dx+ dy = 0.

Here M = p(x)y − r(x) and N = 1. Now

1

N

(
∂M

∂y
− ∂N

∂x

)
= p(x)

Hence,

µ(x) = e
∫
p(x) dx

is an integrating factor. Multiplying (1) by µ(x) we get

d

dx

(
e
∫
p(x) dxy

)
= r(x)e

∫
p(x) dx

Integrating we get

e
∫
p(x) dxy =

∫ x

r(s)e
∫
p(s) ds ds+ C

which on simplification gives

y = e−
∫
p(x) dx

(
C +

∫ x

r(s)e
∫
p(s) ds ds

)
Example 1. Solve y′ + 2xy = 2x

Solution: An integrating factor is ex
2
. Hence,

yex
2

=
∫ x

2tet
2

dt+ C ⇒ y = 1 + Ce−x
2

Comment: The usual notation dy/dx implies that x is the independent variable and y
is the dependent variable. In trying to solve first order ODE, it is sometimes helpful to
reverse the role of x and y, and work on the resulting equations. Hence, the resulting
equation

dx

dy
+ p(y)x = r(y)

is also a linear equation.

Example 2. Solve (4y3 − 2xy)y′ = y2, y(2) = 1

Solution: We write this as
dx

dy
+

2

y
x = 4y

Clearly, y2 is an integrating factor. Hence,

xy2 =
∫ y

4y3 dy + C ⇒ xy2 = y4 + C

Using initial condition, we find xy2 = y4 + 1.
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2 Bernoulli’s equation

This is of the form
y′ + p(x)y = r(x)yλ, (2)

where λ is a real number. Equation (2) is linear for λ = 0 or 1. Otherwise, it is
nonlinear and can be reduced to a linear form by substituting z = y1−λ

Example 3. Solve y′ − y/x = y3

Solution: We write this as
y−3y′ − y−2/x = 1

Substitute y−2 = z ⇒ −2y−3y′ = z′. This leads to

z′ + 2z/x = −2

This is a linear equation whose solution is

zx2 = −2x3/3 + C

Replacing z we find

3
x2

y2
+ 2x3 = C

3 Reducible second order ODE

A general 2nd order ODE is of the form

F (x, y, y′, y′′) = 0

In some cases, by making substitution, we can reduce this 2nd order ODE to a 1st
order ODE. Few cases are described below

Case I: If the independent variable is missing, then we have F (y, y′, y′′) = 0. If we
substitute w = y′, then y′′ = w dw

dy
. Hence, the ODE becomes F (y, w, w dw

dy
) = 0, which

is a 1st order ODE.

Example 4. Solve 2y′′ − y′2 − 4 = 0

Solution: With w = y′, the above equation becomes

2w
dw

dy
− w2 − 4 = 0⇒ ln[(w2 + 4)/C] = y ⇒ w = ±

√
Cey − 4

SInce w = y′, we find
dy√

Cey − 4
= ±x+D

The integral on the LHS can be evaluated by substitution.

Case II: If the dependent variable is missing, then we have F (x, y′, y′′) = 0. If we
substitute w = y′, then y′′ = w′. Hence, the ODE becomes F (x,w,w′) = 0, which is a
1st order ODE.
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Example 5. Solve xy′′ + 2y′ = 0

Solution: Substitute w = y′, then we find

dw

dx
+

2

x
w = 0⇒ w = Cx−2

Since w = y′, we further get

y′ = C/x2 ⇒ y = −C/x+D

4 Orthogonal trajectories

Definition 1. Two families of curves are such that each curve in either family is
orthogonal (whenever they intersect) to every curve in the other family. Each family
of curves is orthogonal trajectories of the other. In case the two families are identical,
they we say that the family is self-orthogonal.

Comment: Orthogonal trajectories has important applications in the field of physics.
For example, the equipotential lines and the streamlines in an irratational 2D flow are
orthogonal.

Slope = dy/dx

Slope =−1/dy/dx

Figure 1: Orthogonal trajectories.

4.1 How to find orthonal trajectories

Suppose the first familiy
F (x, y, c) = 0. (3)

To find the orthogonal trajectories of this family we proceed as follows. First, differ-
entiate (3) w.r.t. x to find

G(x, y, y′, c) = 0. (4)
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Now eliminate c between (3) and (4) to find the differential equation

H(x, y, y′) = 0 (5)

corresponding to the first family. As seen in Figure 1, the differential equation for the
other family is obtained by replacing y′ by −1/y′. Hence, the differetial equation of
the orthogonal trajectories is

H(x, y,−1/y′) = 0 (6)

General solution of (6) gives the required orthogonal trajectories.

Example 6. Find the orthogonal trajectories of familiy of straight lines through the
origin.

Solution: The familiy of straight lines through the origin is given by

y = mx

The ODE for this familiy is
xy′ − y = 0

The ODE for the orthogonal family is

x+ yy′ = 0

Integrating we find
x2 + y2 = C,

which are family of circles with centre at the origin.

ψ2

ψ1

ψr

θ
r

θ

(a) (b)

Figure 2: Orthogonal trajectories.

4.2 *Orthogonal trjactories in polar coordinates

Consider a curve in polar cordinate. The angle ψ between the radial and tangent
directions is given by

tanψ =
r dθ

dr
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Consider the curve with angle ψ1. The curve that intersects it orthogonally has angle
ψ2 = ψ1 + π/2. Now

tanψ2 = − 1

tanψ1

Thus, at the point of orthogonal intersection, the value of

r dθ

dr
(7)

for the second famility should be negative raciprocal of the value of (7) of the first
family. To illustrate, consider the differential equation for the first family:

Pdr +Qdθ = 0.

Thus we find r dθ/dr = −Pr/Q. Hence, the differential equation of the orthogonal
family is given by

r dθ

dr
=

Q

Pr
or

Qdr − r2 P dθ = 0

General solution of the last equation gives the orthogonal trajectories.

Example 7. Find the orthogonal trajectories of familiy of straight lines through the
origin.

Solution: The familiy of straight lines through the origin is given by

θ = A

The ODE for this familiy is
dθ = 0

The ODE for the orthogonal family is

dr = 0

Integrating we find
r = C,

which are family of circles with centre at the origin.

4.3 Oblique trajectories

Here the two families of curves intersect at an arbitrary angle α 6= π/2. Suppose the
first familiy

F (x, y, c) = 0. (8)

To find the oblique trajectories of this family we proceed as follows. First, differentiate
(8) w.r.t. x to find

G(x, y, y′, c) = 0. (9)
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Slope=

Slope=

m

m

1

2

α

Figure 3: Oblique trajectories.

Now eliminate c between (8) and (9) to find the differential equation

H(x, y, y′) = 0. (10)

Now if m1 is the slope of this family, then we write (10) as

H(x, y,m1) = 0, (11)

Let m2 be the slope of the second familily. Then

± tanα =
m1 −m2

1 +m1m2

.

Thus, we find

m1 =
m2 ± tanα

1∓m2 tanα

Hence, from (11), the ODE for the second family satisfies

H
(
x, y,

m2 ± tanα

1∓m2 tanα

)
= 0,

Replacing m2 by y′, the ODE for the second family is written as

H

(
x, y,

y′ ± tanα

1∓ y′ tanα

)
= 0. (12)

General solution of (12) gives the required oblique trajectories.

Note: If we let α→ π/2, we obtained ODE for the orthogonal trajectories.

Example 8. Find the oblique trajectories that intersects the familiy y = x + A at an
angle of 60o
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Solution: The ODE for the given family is

y′ = 1

For the oblique trajectories, we replace

y′ by
y′ ± tan(π/3)

1∓ y′ tan(π/3)
=

y′ ±
√

3

1∓
√

3y′

Thus, the ODE for the oblique trajectories is given by

y′ ±
√

3

1∓
√

3y′
= 1

Simplifying we obtain

y′ =
1−
√

3

1 +
√

3
OR y′ =

1 +
√

3

1−
√

3

Hence, the oblique trajectories are either

y =
1−
√

3

1 +
√

3
x+ C1

Or

y =
1 +
√

3

1−
√

3
x+ C2


