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Lecture V
Picard’s existence and uniquness theorem, Picard’s iteration

1 Existence and uniqueness theorem

Here we concentrate on the solution of the first order IVP

y′ = f(x, y), y(x0) = y0 (1)

We are interested in the following questions:
1. Under what conditions, there exists a solution to (1).
2. Under what conditions, there exists a unique solution to (1).

Comment: An ODE may have no solution, unique solution or infinitely many so-
lutions. For, example y′2 + y2 + 1 = 0, y(0) = 1 has no solution. The ODE
y′ = 2x, y(0) = 1 has unique solution y = 1+x2, whereas the ODE xy′ = y−1, y(0) = 1
has infinitely many solutions y = 1 + αx, α is any real number.

(We only state the theorems. For proof, one may see ‘An introduction to ordinary
differential equation’ by E A Coddington.)

Theorem 1. (Existence theorem): Suppose that f(x, y) is continuous function in some
region

R = {(x, y) : |x− x0| ≤ a, |y − y0| ≤ b}, (a, b > 0).

Since f is continuous in a closed and bounded domain, it is necessarily bounded in R,
i.e., there exists K > 0 such that |f(x, y)| ≤ K ∀(x, y) ∈ R. Then the IVP (1) has
atleast one solution y = y(x) defined in the interval |x− x0| ≤ α where

α = min

{
a,

b

K

}

(Note that the solution exists possibly in a smaller interval)

Theorem 2. (Uniquness theorem): Suppose that f and ∂f/∂y are continuous function
in R (defined in the existence theorem). Hence, both the f and ∂f/∂y are bounded in
R, i.e.,

(a) |f(x, y)| ≤ K and (b)

∣∣∣∣∣∂f∂y
∣∣∣∣∣ ≤ L ∀(x, y) ∈ R

Then the IVP (1) has atmost one solution y = y(x) defined in the interval |x−x0| ≤ α
where

α = min

{
a,

b

K

}
.

Combining with existence thereom, the IVP (1) has unique solution y = y(x) defined
in the interval |x− x0| ≤ α.

Comment: Condition (b) can be replaced by a weaker condition which is known as
Lipschitz condition. Thus, instead of continuity of ∂f/∂y, we require

|f(x, y1)− f(x, y2)| ≤ L|y1 − y2| ∀(x, yi) ∈ R.
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If ∂f/∂y exists and is bounded, then it necessarily saitisfies Lipschitz condition. On
the other hand, a function f(x, y) may be Lipschitz continuous but ∂f/∂y may not
exists. For example f(x, y) = x2|y|, |x| ≤ 1, |y| ≤ 1 is Lipschitz continous in y but
∂f/∂y does not exist at (x, 0) (prove it!).

*Note 1: The existence and uniqueness theorems stated above are local in nature
since the interval, |x− x0| ≤ α, where solution exists may be smaller than the original
interval, |x−x0| ≤ a, where f(x, y) is defined. However, in some cases, this restrictions
can be removed. Consider the linear equation

y′ + p(x)y = r(x), (2)

where p(x) and r(x) are defined and continuous in a the interval a ≤ x ≤ b. Here
f(x, y) = −p(x)y + r(x). If L = maxa≤x≤b |p(x)|, then

|f(x, y1)− f(x, y2)| = | − p(x)(y1 − y2)| ≤ L|y1 − y2|

Thus, f is Lipschitz continuous in y in the infinite vertical strip a ≤ x ≤ b and
−∞ < y <∞. In this case, the IVP (2) has a unique solution in the original interval
a ≤ x ≤ b.

*Note 2: Though the theorems are stated in terms of interior point x0, the point x0

could be left/right end point.

Comment: The conditions of the existence and uniqueness theorem are sufficeint but
not necessary. For example, consider

y′ =
√
y + 1, y(0) = 0, x ∈ [0, 1]

Clearly f does not satisfy Lipschitz condition near origin. But still it has unique
solution. Can you prove this? [Hint: Let y1 and y2 be two solutions and consider

z(x) =
(√

y1(x)−
√
y2(x)

)2
.]

Comment: The existence and uniqueness theorem are also valid for certain system
of first order equations. These theorems are also applicable to a certain higher order
ODE since a higher order ODE can be reduced to a system of first order ODE.

Example 1. Consider the ODE

y′ = xy − sin y, y(0) = 2.

Here f and ∂f/∂y are continuous in a closed rectangle about x0 = 0 and y0 = 2. Hence,
there exists unique solution in the neighbourhood of (0, 2).

Example 2. Consider the ODE

y′ = 1 + y2, y(0) = 0.

Consider the rectangle
S = {(x, y) : |x| ≤ 100, |y| ≤ 1}.

Clearly f and ∂f/∂y are continuous in S. Hence, there exists unique solution in the
neighbourhood of (0, 0). Now f = 1 + y2 and |f | ≤ 2 in S. Now α = min{100, 1/2} =
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1/2. Hence, the theorems guarantee existence of unique solution in |x| ≤ 1/2, which is
much smaller than the original interval |x| ≤ 100.

Since, the above equation is separable, we can solve it exactly and find y(x) = tan(x).
This solution is valid only in (−π/2, π/2) which is also much smaller than [−100, 100]
but nevertheless bigger than that predicted by the existence and uniqueness theorems.

Example 3. Consider the IVP

y′ = x|y|, y(1) = 0.

Since f is continuous and satisfy Lipschitz condition in the neighbourhood of the (1, 0),
it has unique solution around x = 1.

Example 4. Consider the IVP

y′ = y1/3 + x, y(1) = 0

Now

|f(x, y1)− f(x, y2)| = |y1/3
1 − y1/3

2 | =
|y1 − y2|

|y2/3
1 + y

1/3
1 y

1/3
2 + y

1/3
2 |

Suppose we take y2 = 0. Then

|f(x, y1)− f(x, 0)| = |y1 − 0|
|y2/3

1 |

Now we can take y1 very close to zero. Then 1/|y2/3
1 | becomes unbounded. Hence, the

relation
|f(x, y1)− f(x, 0)| ≤ L|y1 − 0|

does not always hold around a region about (1, 0).

Since f does not satisfy Lipschitz condition, we can not say whether unique solution
exits or does not exist (remember the existence and uniqueness conditios are sufficient
but not necessary).

On the other hand
y′ = y1/3 + x, y(1) = 1

has unique solution around (1, 1).

Example 5. Discuss the existence and unique solution for the IVP

y′ =
2y

x
, y(x0) = y0

Solution: Here f(x, y) = 2y/x and ∂f/∂y = 2/x. Clearly both of these exist and
bounded around (x0, y0) if x0 6= 0. Hence, unique solution exists in a interval about x0

for x0 6= 0.

For x0 = 0, nothing can be said from the existence and uniquness theorem. Fortunately,
we can solve the actual problem and find y = Ax2 to be the general solution. When
x0 = 0, there exists no solution when y0 6= 0. If y0 = 0, then we have infinite number
of solutions y = αx2 (α any real number) that satisfy the IVP y′ = 2y/x, y(0) = 0.
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2 Picard iteration for IVP

This method gives approximate solution to the IVP (1). Note that the IVP (1) is
equivalent to the integral equation

y(x) = y0 +
∫ x

x0

f(t, y(t)) dt (3)

A rough approximation to the solution y(x) is given by the function y0(x) = y0, which
is simply a horizontal line through (x0, y0). (don’t confuse function y0(x) with constant
y0). We insert this to the RHS of (3) in order to obatin a (perhaps) better approximate
solution, say y1(x). Thus,

y1(x) = y0 +
∫ x

x0

f(t, y0(t)) dt = y0 +
∫ x

x0

f(t, y0) dt

The nest step is to use this y1(x) to genereate another (perhaps even better) approxi-
mate solution y2(x):

y2(x) = y0 +
∫ x

x0

f(t, y1(t)) dt

At the n-th stage we find

yn(x) = y0 +
∫ x

x0

f(t, yn−1(t)) dt

Theorem 3. If the function f(x, y) satisfy the existence and uniqueness theorem for
IVP (1), then the succesive approximation yn(x) converges to the unique solution y(x)
of the IVP (1).

Example 6. Apply Picard iteration for the IVP

y′ = 2x(1− y), y(0) = 2.

Solution: Here y0(x) = 2. Now

y1(x) = 2 +
∫ x

0
2t(1− 2) dt = 2− x2

y2(x) = 2 +
∫ x

0
2t(t2 − 1) dt = 2− x2 +

x4

2

y3(x) = 2 +
∫ x

0
2t

(
t2 − t4

2
− 1

)
dt = 2− x2 +

x4

2
− x6

3!

y4(x) = 2 +
∫ x

0
2t

(
t6

3!
− t4

2
+ t2 − 1

)
dt = 2− x2 +

x4

2
− x6

3!
+
x8

8!

By induction, it can be shown that

yn(x) = 2− x2 +
x4

2
− x6

3!
+ · · ·+ (−1)nx

2n

n!

Hence, yn(x)→ 1 + e−x2
as n→∞. Now y(x) = 1 + e−x2

is the exact solution of the
given IVP. Thus, the Picard iterates converge to the unique solution of the given IVP.

Comment: Picard iteration has more theoretical value than practical value. It is
used in the proof of existence and uniqueness theorem. On the other hand, finding
approximate solution using this method is almost impractical for complicated function
f(x, y).


