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Lecture VII
Second order linear ODE, fundamental solutions, reduction of order

A second order linear ODE can be written as

y′′ + p(x)y′ + q(x)y = r(x), x ∈ I, (1)

where I is an interval. If r(x) = 0, ∀x ∈ I, then (1) is a homogeneous 2nd order linear
ODE, otherwise it is non-homogeneous. We shall assume the following existence and
uniqueness theorem for (1).

Theorem 1. Let p(x), q(x) and r(x) be continuous in I. If x0 ∈ I and K0, K1 are two
arbitrary real numbers, then (1) has unique solution y(x) on I such that y(x0) = K0

and y′(x0) = K1.

We shall also consider the homogeneous 2nd order linear equation

y′′ + p(x)y′ + q(x)y = 0, x ∈ I. (2)

Theorem 2. Let y1(x) and y2(x) be two solutions of (2). Then y(x) = c1y1(x)+c2y2(x)
(c1, c2 arbitrary constants) is also a solution of (2).

Proof: Trivial

Definition 1. Two function f and g are defined in I. If there exists constant a, b, not
both zero such that

af(x) + bg(x) = 0 ∀x ∈ I,
then f and g are linearly dependent (LD) in I, otherwise they are linearly independent
(LI) in I.

Example 1.
(i) sinx, cosx, x ∈ (−∞,∞) are LI.
(ii) x|x|, x2, x ∈ (−1, 1) are LI.
(iii) x|x|, x2, x ∈ (0, 1) are LD

Definition 2. Let f and g be two differentiable functions. Then

W (f, g) =

∣∣∣∣∣ f(x) g(x)
f ′(x) g′(x)

∣∣∣∣∣ = f(x)g′(x)− g(x)f ′(x)

is called the Wronskian of f and g

Note : Let f and g be differentiable. If f and g are LD in an interval I, then
W (f, g) = 0, ∀x ∈ I. Hence, if two differentiable functions f and g are such that
W (f, g) 6= 0 at a point x0 ∈ I, then f and g are LI.
But the converse is not true. If W (f, g) = 0, ∀x ∈ I, then f and g may not be LD.
For example, consider f(x) = x|x|, g(x) = x2, x ∈ (−∞,∞). Here W (f, g) = 0,∀x but
still f and g are LI.

Example 2. For f(x) = x, g(x) = sinx, we find W (f, g) = x cosx − sinx which is
nonzero, for example, at x = π. Hence, x and sinx are LI. Note that W (f, g) may be
zero at some point such as x = 0.
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Theorem 3. Two solutions y1, y2 of (2) are LD iff W (y1, y2) = 0 at certain point
x0 ∈ I.

Proof: Let y1, y2 be LD. Thus, there exists a, b not both zero such that

ay1(x) + by2(x) = 0 (3)

We can differentiate (3) once and obtain

ay′1(x) + by′2(x) = 0 (4)

Now (3) and (4) can be viewed as linear homogeneous equations in two unknowns a
and b. Since the solution is nontrivial, the determinant must be zero. Thus W (y1, y2) =
0, ∀x ∈ I. Hence, W (y1, y2) must be zero at x0 ∈ I.

Conversely, suppose W (y1, y2) = 0 at x0 ∈ I. Now consider

ay1(x0) + by2(x0) = 0 (5)

and
ay′1(x0) + by′2(x0) = 0 (6)

Now the determinant of the system of linear equations (in unknowns a, b) of (5) and
(6) is the Wronskian W (y1, y2) at x0. Since, this is zero, we can find nontrivial solution
for a and b. Take these nontrivial a and b and form

y(x) = ay1(x) + by2(x)

By (5) and (6), we find y(x0) = y′(x0) = 0. Hence, by uniqueness theorem y(x) ≡ 0,
i.e. for nontrivial a and b

ay1(x) + by2(x) = 0, x ∈ I

Hence y1, y2 are LD.

Comment: This theorem says that if f and g are solutions of (2) and W (f, g) = 0 at
x0 ∈ I, then f and g must be LD. But in Example 2, W (f, g) = 0 at x = 0 but still f
and g are LI. Do you find any contradiction in it?

Corollary 1. Let y1, y2 be solutions of (2). If the Wronskian W (y1, y2) = 0 at x0 ∈ I,
then W (y1, y2) = 0 ∀x ∈ I.

Proof: We proceed as in the converse part of the previous theorem to prove that y1

and y2 are LD. Now proceed as in the first part of the same theorem to prove that
W (y1, y2) = 0, ∀x ∈ I.

Aliter: Since y1 and y2 are solutions of (2), we obtain

y′′1 + p(x)y′1 + q(x)y1 = 0, (7)

y′′2 + p(x)y′2 + q(x)y2 = 0. (8)

Multiply (7) by y2 and (8) by y1 and subtract. This leads to

dW

dx
+ p(x)W = 0,
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where we have used the short notation W for W (y1, y2). Integrating, we find

W (x) = Ce−
∫

p(x) dx

Since W (x0) = 0, this gives C = 0 and hence W ≡ 0.

Theorem 4. Let y1, y2 be solutions of (2). If there exists a point x0 ∈ I such that
W (y1, y2) 6= 0 at x0, then y1 and y2 are LI and forms a basis solution for (2).

Proof: If y1 are y2 are LD, then W (y1, y2) ≡ 0 which contradicts W (y1, y2) 6= 0 at x0.
Hence, y1 and y2 are LI.

Now we shall show that y1 and y2 spans the solution space for (2). Let y be any solution
with y(x0) = K0 and y′(x0) = K1. Now, the system

ay1(x0) + by2(x0) = K0

ay′1(x0) + by′2(x0) = K1

has unique solution a = c1 and b = c2, since the determinant is nonzero. Let ζ(x) =
c1y1(x)+c2y2(x). Then, ζ(x0) = K0, ζ

′(x0) = K1. But by the existence and uniqueness
theorem, we have y(x) ≡ ζ(x) and thus

y(x) = c1y1(x) + c2y2(x), ∀x ∈ I

Hence, y1 and y2 spans the solution space. Thus, y1 and y2 form a basis of solution for
(2). Thus, a general solution y(x) of (2) can be written as

y(x) = Ay1(x) +By2(x),

where A and B are arbitrary constants. For an IVP, these constants take particular
values to satisfy the initial condition.

Existence of basis: By the existence and uniqueness theorem, there exists a solution
y1(x) of (2) with y1(x0) = 1, y′1(x0) = 0. Similarly, there exists a solution y2(x) of (2)
with y2(x0) = 0, y′2(x0) = 1. Hence, W (y1, y2) = 1 6= 0 at x0. By the previous, theorem
y1 and y2 form a basis solution for (2).

Example 3. y1(x) = sinx and y2(x) = cos x satisfy y′′+y = 0 and W (y1, y2) = −1 6= 0.
Hence, sinx and cosx form a basis of solution for y′′+ y = 0. Thus, a general solution
of y′′ + y = 0 is y(x) = C1 sinx+ C2 cosx.

Reduction of order: Consider the homogeneous 2nd order linear equation

y′′ + p(x)y′ + q(x)y = 0. (9)

If we know one nonzero solution y1(x) (by any method) of (9), then it is easy to find
the second solution y2(x) which is independent of y1. Thus, y1 and y2 will form a basis
of solution.

We assume that y2(x) = v(x)y1(x), where v(x) is an unknown function. Since, y2 is a
solution, we substitute y2(x) = v(x)y1(x) into (9). Taking into account the fact that
y1 is also a solution of (9), we find

y1v
′′ + (2y′1 + py1) v

′ = 0.



S. Ghorai 4

Dividing this by y1 and writing U for v′, we get

U ′ +

(
2y′1
y1

+ p

)
U = 0

Since this is linear equation, it has general solution

U =
C

y2
1

e−
∫

p dx,

where C is a constant of integration. Thus, we find

v(x) = C
∫ 1

y2
1

e−
∫

p dx +D,

where D is another constant of integration. Finally, multiply v by y1 to find y2:

y2(x) = Cy1(x)
∫ 1

y2
1

e−
∫

p dx +Dy1(x).

Since, we are looking for a solution independent of y1, this can be taken with C = 1
and D = 0. Thus

y2(x) = y1(x)
∫ 1

y2
1

e−
∫

p dx.

To show that they are LI, note that

W (y1, y2) = y1y
′
2 − y2y

′
1 = y2

1v
′ = y2

1U = e−
∫

p dx 6= 0.

Thus, y1 and y2 form a basis of solution.

Example 4. Solve xy′′ + (2x+ 1)y′ + (x+ 1)y = 0

Solution: Since at x = 0, the equation becomes singular, we solve the above for
x 6= 0. WLOG, we assume that x > 0. Clearly, y1(x) = e−x is a solution. We write
this equation as

y′′ +
(

2 +
1

x

)
y′ +

x+ 1

x
y = 0.

Hence, p(x) = 2 + 1/x. Substituting y2(x) = v(x)y1(x) and solving we find

v(x) =
∫ 1

e−2x
exp

(
−
∫

(2 + 1/x) dx
)

= lnx

Hence, y2(x) = e−x lnx. Thus, the general solution is y(x) = e−x(C1+C2 lnx), x > 0.
What is the general solution for x < 0?


