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Lecture VII

Second order linear ODE, fundamental solutions, reduction of order

A second order linear ODE can be written as

y' + @)y +qlx)y=r(z), eI, (1)

where 7 is an interval. If r(z) = 0, Vo € I, then (1) is a homogeneous 2nd order linear
ODE, otherwise it is non-homogeneous. We shall assume the following existence and
uniqueness theorem for (1).

Theorem 1. Let p(x), q(z) and r(z) be continuous in Z. If xg € T and Ky, Ky are two
arbitrary real numbers, then (1) has unique solution y(x) on I such that y(zo) = Koy
and y'(xo) = K;.

We shall also consider the homogeneous 2nd order linear equation
y' +p@)y +q@)y=0, xel (2)

Theorem 2. Let yi(z) and yz(x) be two solutions of (2). Then y(x) = c1y1(x)+caya(z)
(c1,co arbitrary constants) is also a solution of (2).

Proof: Trivial

Definition 1. Two function f and g are defined in Z. If there exists constant a,b, not
both zero such that
af(z)+bg(z) =0 Vrel,

then f and g are linearly dependent (LD) in T, otherwise they are linearly independent
(LI) inT.

Example 1.

(i) sinz,cosz, x € (—o0,00) are LI.
(ii) z|x|, z*, x € (=1,1) are LI

(iii) z|z|, 2%, = € (0,1) are LD

Definition 2. Let f and g be two differentiable functions. Then

| fl@) glx) | _ ) — o) f(a
wiro) =| 10 40 | = roe - s

1s called the Wronskian of f and g

Note : Let f and g be differentiable. If f and g are LD in an interval Z, then
W(f,g) = 0,Vx € Z. Hence, if two differentiable functions f and g are such that
W(f,g) # 0 at a point zg € Z, then f and g are LI.

But the converse is not true. If W(f, g) = 0, Vo € Z, then f and g may not be LD.
For example, consider f(x) = z|z|, g(z) = 2%, x € (—o0,00). Here W(f, g) = 0,Vx but
still f and g are LI.

Example 2. For f(z) = z,g(z) = sinz, we find W(f,g) = xcosxz — sinx which is
nonzero, for example, at x = m. Hence, x and sinx are LI. Note that W (f,g) may be
zero at some point such as x = 0.
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Theorem 3. Two solutions yi,y» of (2) are LD iff W(yi,y2) = 0 at certain point
ro € L.

Proof: Let y;,y, be LD. Thus, there exists a, b not both zero such that
ayy(z) + byz(z) =0 (3)

We can differentiate (3) once and obtain

ay (x) + by(x) = 0 (4)

Now (3) and (4) can be viewed as linear homogeneous equations in two unknowns a
and b. Since the solution is nontrivial, the determinant must be zero. Thus W (y;,y2) =
0, Vo € Z. Hence, W (y1,y2) must be zero at xy € Z.

Conversely, suppose W (y;,y2) = 0 at xo € Z. Now consider

ay1(wo) + bya(zg) = 0 (5)

and
ay (wo) + byy(wo) = 0 (6)

Now the determinant of the system of linear equations (in unknowns a,b) of (5) and
(6) is the Wronskian W (yi,y2) at xo. Since, this is zero, we can find nontrivial solution
for a and 0. Take these nontrivial a and b and form

y(x) = ay(x) + by ()

By (5) and (6), we find y(x¢) = ¢/(x¢) = 0. Hence, by uniqueness theorem y(z) = 0,
i.e. for nontrivial a and b

ay1 () + byz(z) =0, rel

Hence y1, yo are LD.

Comment: This theorem says that if f and ¢ are solutions of (2) and W (f,g) =0 at
xo € Z, then f and g must be LD. But in Example 2, W(f,g) = 0 at z = 0 but still f
and g are LI. Do you find any contradiction in it?

Corollary 1. Let yy,y2 be solutions of (2). If the Wronskian W (yy,y2) =0 at zg € I,
then W (y1,y2) = 0Vz € Z.

Proof: We proceed as in the converse part of the previous theorem to prove that y;
and y, are LD. Now proceed as in the first part of the same theorem to prove that
W(y17y2) = 07 Va € 1.

Aliter: Since y; and y, are solutions of (2), we obtain

v+ o) +q(@)y =0, (7)
Yo +p(x)yy + q(x)y2 = 0. (8)
Multiply (7) by y2 and (8) by y; and subtract. This leads to
aw

dx
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where we have used the short notation W for W (y, y2). Integrating, we find
W(z) = Ce JP@)d
Since W (zg) = 0, this gives C' = 0 and hence W = 0.

Theorem 4. Let y1,y> be solutions of (2). If there exists a point xy € T such that
W(y1,y2) # 0 at xo, then y; and yo are LI and forms a basis solution for (2).

Proof: If y; are y, are LD, then W (y,y2) = 0 which contradicts W (y;,y2) # 0 at xq.
Hence, y; and y, are LI.

Now we shall show that y; and y, spans the solution space for (2). Let y be any solution
with y(xg) = Ko and y/'(z¢) = K;. Now, the system

ay1(xo) + bya(zo) = Ko
ayy (o) + bys(wo) = K
has unique solution a = ¢; and b = ¢y, since the determinant is nonzero. Let ((z) =

c1y1(z) +cay2(z). Then, ((xo) = Ko, ('(z0) = K;. But by the existence and uniqueness
theorem, we have y(x) = ((x) and thus

y(z) = ey (z) + coyp(x), Vel

Hence, y; and y, spans the solution space. Thus, y; and ys form a basis of solution for
(2). Thus, a general solution y(x) of (2) can be written as

y(x) = Ayi(x) + Bys(2),

where A and B are arbitrary constants. For an IVP, these constants take particular
values to satisfy the initial condition.

Existence of basis: By the existence and uniqueness theorem, there exists a solution
y1(x) of (2) with y1(zo) = 1,¥)(x¢) = 0. Similarly, there exists a solution ys(x) of (2)
with ya(z9) = 0,y5(z9) = 1. Hence, W (y1,y2) = 1 # 0 at zo. By the previous, theorem
y1 and y form a basis solution for (2).

Example 3. y;(z) = sinx and yz(x) = cos z satisfy y"+y = 0 and W (y1,y2) = —1 # 0.
Hence, sinx and cosx form a basis of solution for y" +vy = 0. Thus, a general solution
of Y +y =0 isy(x) = Cysinx + Cycosz.

Reduction of order: Consider the homogeneous 2nd order linear equation

y" +p(x)y’ +q(z)y = 0. (9)

If we know one nonzero solution y;(x) (by any method) of (9), then it is easy to find
the second solution y,(x) which is independent of y;. Thus, y; and ys will form a basis
of solution.

We assume that y(z) = v(x)y1(z), where v(x) is an unknown function. Since, ys is a
solution, we substitute ys(x) = v(z)y;(z) into (9). Taking into account the fact that
y1 is also a solution of (9), we find

y1v" + (2y; + pyr) v = 0.
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Dividing this by y; and writing U for v/, we get
2 /
U'+ <y1 + p) U=0
Y1

Since this is linear equation, it has general solution
g = Comiose
Y1
where C' is a constant of integration. Thus, we find
1 —f dx
v(x):C/—Qe P+ D,
Y1
where D is another constant of integration. Finally, multiply v by y; to find ys:
1 —fpdx
y2(z) = Cyy(x) / —e + Dy ().

Ui

Since, we are looking for a solution independent of y;, this can be taken with C' = 1
and D = 0. Thus

(e) = () [ eI

To show that they are LI, note that

W(ylvyZ) = y1y§ - ygyi = y%vl = ny — e—fpdz 7& 0.
Thus, y; and y, form a basis of solution.

Example 4. Solve zy" + 2z + 1)y + (z+ 1)y =0

Solution: Since at x = 0, the equation becomes singular, we solve the above for
x # 0. WLOG, we assume that = > 0. Clearly, y;(x) = e™* is a solution. We write

this equation as
1 x+1
x x

Hence, p(z) = 2 4 1/z. Substituting y»(x) = v(z)y1(x) and solving we find
1
v(x) = /;exp (— /(2+ 1/x) dx) =Inz

Hence, ys(x) = e~ Inx. Thus, the general solution is y(z) = e *(C1+CyInz), x> 0.
What is the general solution for x < 07



